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 With the objective of identifying intrinsic forms of mathematical production in complex analysis (CA), this study 
presents an analysis of the mathematical activity of five original works that contributed to the development of 

Cauchy’s integral theorem. The analysis of the mathematical activity was carried out through the identification of 

the types of expressions used and the way they were used by the historical subjects when communicating their 

results, to subsequently identify transversal elements of knowledge production. The analysis was refined by the 

notion of confrontation, which depicts the development of mathematical knowledge through the idea of building 
knowledge against previous knowledge. As a result of the study we established epistemological hypothesis, which 

are conceived as conjectures that reveal ways in which mathematical knowledge was generated in CA. 
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INTRODUCTION 

According to Remmert (1991), in the 19th century Augustin-Louis Cauchy, Bernhard Riemann, and Karl Weierstrass developed 

the modern theory of complex functions (i.e., complex analysis [CA]) based on the concept of holomorphic function by addressing 

it via three different approaches. Remmert (1991) states that Cauchy’s “function theory is based on his famous integral theorem 

and the residue concept” (p. 4), which enable Cauchy to attend to holomorphic functions in terms of integral representations. 

Departing from this perspective, Riemann’s (1851) geometric point of view allowed him to work with holomorphic functions via 

mappings between domains in the complex plane. Finally, Remmert (1991) reports that Weierstrass theory of complex functions 

is the theory of holomorphic functions developed locally into convergent power series; a theory that relies solely on the algebraic 

manipulations of such power series.  

Even though Remmert (1991) points out that the theory of complex function was permeated by geometric and algebraic 

approximations, according to Garcia and Ross (2017), the current teaching of CA is characterized by a debate in terms of the level 

of detail necessary to prove the results framed in this branch of mathematics. On one hand, the authors claim that the technical 

details that support the proofs must meet the standards that make mathematics concise and complete. On the other hand, they 

emphasize that attending to this type of details hinders the applicability of results in other branches of scientific knowledge. 

Studies in Mathematics Education have been carried out to address this type of problems. For example, some research has 

incorporated digital technologies to attend to different mathematical objects inscribed in the theory of complex functions 

(D’Azevedo & Dos Santos, 2021; Dittman et al., 2016; Ponce, 2019), while some other studies investigate how undergraduate 

mathematics students and professional mathematicians work geometrically with them (Hanke, 2020; Oehrtman et al., 2019; Soto 

& Oehrtman, 2022; Soto-Johnson & Hancock, 2019; Soto-Johnson et al., 2016).  

Distancing themselves from this type of research, where mathematical objects of CA are endowed with meaning in the 

contemporary scenario, there are studies in the discipline that question them in their context of origin (Cantoral et al., 1987). 

Studies of this nature have made it possible to identify hegemonic arguments of the mathematical school discourse that restrict 

the way in which students confront new mathematical ideas from CA (Cantoral & Farfán, 2004), as well as forms of validation that 

do not adhere to standard proofs in mathematical language, such as the use of calculators in engineering communities (Martínez, 

2017). 

Most of the research in Mathematics Education that has problematized knowledge in CA in its context of origin has revolved 

around the origins of this field of mathematics; its further development it’s address in this paper with the aim of unveiling forms 

of knowledge production that may have been overlooked, if not forgotten, in the contemporary mathematical school discourse. 
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In this sense, the question guiding the study is how knowledge was produced in CA. To provide an answer, a result known as 

Cauchy’s integral theorem (CIT) was problematized by means of analyzing original mathematical works that enabled its 

development. As stated by Nahin (1998), the theorem establishes that “the contour integral around any non-self-intersecting 

closed path 𝐶, of a function that is analytic everywhere inside and on 𝐶, is always zero” (p. 197). According to Gray (2000), this 

result is of vital importance to the theory of complex functions because it allows to distinguish CA from real analysis (RA) in two 

dimensions.  

In Piña-Aguirre and Farfán (2022), different forms of mathematical production regarding CIT are conjectured through a 

qualitative content analysis of Cauchy’s (1814) Mémoire sur les intégrales définies. According to the authors, in this memoire, the 

production of knowledge refers to the generalization of results of RA through the introduction of complex quantities conceived as 

the simultaneous handling between two real quantities through the symbolic-formal notation 𝑧 = 𝑥 + 𝑖𝑦, in which the validation 

of the results derived from the extension process is based on a work by analogy in the field of real numbers.  

Several studies (Bak & Popvassilev, 2017; Bottazzini & Gray, 2013; Neuenschwander, 1981) attribute the development of the 

theorem to different historical subjects in different time periods (Figure 1). To grasp a full picture of intrinsic forms of 

mathematical production in CA, and to further develop the results in Piña-Aguirre and Farfán (2022), the following original works 

were analyzed. 

Cauchy’s (1825) Mémoire sur les intégrales définies, prises entre des limites imaginaires; a section of the book by Briot and 

Bouquet (1875) titled Théorie des fonctions elliptiques; Goursat’s (1884, 1900) works Démonstration du théorème de Cauchy and Sur 

la définition générale des fonctions analytiques, d’après Cauchy, and Moore’s (1900) article A simple proof of the fundamental 

Cauchy-Goursat theorem. 

Guided by Bråting and Pejlare (2015), we analyzed the original works bearing in mind the context of the authors’ respective 

time periods when addressing the theorem. The analysis of the intellectual productions was further supported by the notion of 

confrontation (Farfán, 2012), which allows to conceive the development of mathematical knowledge by relying on and going 

against previous knowledge. As a result of the analysis, we propose a conjecture, which enables a description of how mathematical 

knowledge was produced when the authors addressed CIT; ergo, this conjecture depicts a way in which mathematical knowledge 

was produced in CA. In this investigation said conjecture is known as an epistemological hypothesis.  

It is important to emphasize that the main objective of this article is to communicate how we have conjectured an 

epistemological hypothesis based on the analysis of original works. This hypothesis is conceived as a theoretical result that will 

be empirically tested and contrasted with the contemporary mathematical school discourse that permeates the teaching and 

learning of CA as our research develops. 

THEORETICAL BACKGROUND: A WAY OF CONCEIVING THE PRODUCTION OF MATHEMATICAL 

KNOWLEDGE 

In this research the study of the intellectual productions of historical subjects is conceived in what Bråting and Pejlare (2015) 

describe as the history approach to the interpretation of original works. The authors adopt the idea from Grattan-Guinness (2004), 

who categorizes the interpretation of modern mathematical notions from the history approach and the heritage approach. For 

Bråting and Pejlare (2015), a heritage interpretation is characterized by inserting a given modern mathematical notion–a 

definition, a theorem, a concept, among others–in the study of its own historical development, where the aim is usually to 

elucidate a path of development that culminates in the mathematical notion under study. On the other hand, a history 

interpretation is characterized by analyzing the development of a given mathematical notion based on the context of its time, 

without being influenced by its modern context. 

Accepting that the production of mathematical knowledge depends on the context in which it was produced allows us to 

recognize as valid the processes that the historical subjects used for the communication of their results. Derived from this, the 

analysis of the original works is limited to an interpretation of the mathematical activity in terms of the types of expressions (iconic, 

symbolic, narrative, tabular, etc.) used by the historical subjects, detached of external judgments from the contemporary 

mathematical apparatus. Unveiling the types of expressions used by the authors and identifying the objectives of these 

expressions in the totality of their original works allow us to recognize how the authors did mathematics. 

 

Figure 1. Development of Cauchy’s integral theorem (Source: Authors’ own illustration) 
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In addition to the recognition of the context in the production of mathematical knowledge, the proposed analysis is 

complemented through the notion of confrontation as a way of conceptualizing the development of mathematical knowledge. 

This notion is based on the idea of building by relying on ... and going against the same thing on which it was built (Farfán, 2012). 

According to Farfán (2012), this idea has its origins in Bachelard (1934), who in his seminal work proposes that epistemological 

obstacles depict a way in which scientific knowledge is developed, recognizing that such development does not occur 

continuously and without errors; instead, in the production of knowledge some previous knowledge acts simultaneously as 

support and as an obstacle. 

In this order of ideas, Brousseau (2006) presents a different meaning of epistemological obstacles framed in the field of 

Mathematics Education, which explains that the mistakes made by students are not the result of ignorance–lack of knowledge–

but the effect of knowledge that up to that moment is successful, and that eventually prevents the acquisition of new knowledge. 

It should be noted that an important feature of an epistemological obstacle, in Brousseau’s (2006) sense, is that it presents itself 

both in history and in the mind of the current individual who wants to learn. 

A distinctive feature of our analysis is that the notion of confrontation corresponds solely to the mathematical knowledge that 

in history hindered the development of the mathematical apparatus surrounding CIT, therefore we detach ourselves from the 

notion of epistemological obstacle in Brousseau’s (2006) broad sense and adhere to Bachelard’s (1934) ideas, to the extent that 

the notion of confrontation refers to the production of mathematical knowledge based on a certain knowledge that eventually 

prevented the production of new knowledge. In this sense, the notion of confrontation refers to the idea that in order to develop 

mathematical knowledge in CA, historical subjects had to confront their dominant ways of doing mathematics. 

In conclusion, the epistemological study carried out does not seek a historical reconstruction of the events surrounding CIT; 

instead, it proposes a reconstruction that allows to conjecture how knowledge in CA was constructed by acknowledging the 

processes of knowledge production of the historical subjects in their time periods. Incorporating the notion of confrontation to 

the theoretical and methodological framework describes a way in which we conceived mathematical knowledge was developed. 

These ways of envisaging knowledge and its development is what enabled the structuring of an epistemological hypothesis. 

METHODS: HOW TO CONJECTURE EPISTEMOLOGICAL HYPOTHESIS 

The configuration of the epistemological hypothesis of this study is based on the analysis of the intellectual productions, 

mentioned in the introduction of this paper, by means of a vertical analysis and a horizontal analysis of them. 

The vertical analysis of the original works is characterized by establishing a dialogue with each mathematical work by 

answering two questions. An answer to the question what type of expressions (iconic, symbolic, narrative, tabular, etc.) allowed the 

authors to communicate the mathematical notions (definitions, theorems, concepts, mathematical objects) that structure the 

theorem? Attends to value the ways in which the historical subjects did mathematics. Since each type of expression carries an 

intentionality of communicating the mathematical work of the authors, an answer to the question what are these expressions used 

by the authors conveying? is provided. 

It is important to emphasize that the answers to the second question of the vertical analysis depend on how the expressions 

used by the authors are interpreted; therefore, the answers provided in this research are permeated by our mathematical 

knowledge. Our research aims to communicate our understanding of what the historical subjects were doing without judging it as 

erroneous, lacking, brilliant, cunning, or with any other adjective that positions the mathematical activity of the authors as inferior 

or superior to contemporary mathematics, meaning that in this research we do not compare the way in which mathematics was 

done with the way in which mathematics is currently done. 

Carrying out a dialogue of this nature allowed the identification of two conceptualizations1 of complex quantities (complex 

numbers and the complex variable) that permeated the mathematical production of the historical subjects. On one hand, the 

symbolic-formal conceptualization of complex quantities, i.e., the recognition of complex quantities through expressions of the 

form 𝑥 + 𝑖𝑦, made it possible to extend and give other meanings to results established in the field of real numbers. On the other 

hand, the graphical-descriptive conceptualization of complex quantities, understanding as such the recognition of a geometric 

setting to address complex quantities via points in the plane, allowed the production of mathematical knowledge concerning CIT. 

Following the vertical analysis, the horizontal analysis has a twofold objective. To present some reasons that led the authors 

to address the theorem in their intellectual productions, the first objective was to provide an answer to the question What was the 

authors’ purpose to write and publish their original mathematical works? Secondly, because the development of the theorem 

depends on two conceptualizations of complex quantities, we recapitulate relevant elements of each conceptualization. 

Interested in the transition between both conceptualizations, where the graphical-descriptive conceptualization was used for 

the first time by Briot and Bouquet half a century after Cauchy worked from the symbolic-formal conceptualization, questions 

arise as to how and why the change occurred. Because this research relies on the premise that in the production of mathematical 

knowledge the historical subjects faced confrontations, it is necessary to describe how to look for them in the analysis of their 

original works, and for this Cid (2015) was taken as a reference. The author, based on Gascón (1993), conceives that in the historical 

development of the mathematical apparatus the notion of epistemological obstacle can be inquired in the origins of a bifurcation, 

understanding as such a modification in the mathematical activity predominantly used until some specific moment in history. 

 
1  The word conceptualization is being used to highlight the plurality of points of view that made possible the production of mathematical 

knowledge regarding the theorem. 
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From her work it is possible to find these moments of rupture–in the nature of the mathematical activity– in terms of the change 

of techniques being used by the historical subjects, as well as in the field of problems that developed once the obstacle was faced.  

The above allows us to propose the search for confrontations through the following two aspects. 

1. By identifying the changes in the techniques used by the historical subjects through the sudden introduction of different 

forms of mathematical activity that allow them to explain their mathematical work. For such task it is important to be 

aware of the ways in which the authors communicated their results, with the aim of showing if there is a change in them. 

In this order of ideas, Cid (2015) remarks that it is important to pay attention to their omissions and hesitations, which can 

be expressed by the excess of explanations, since these new ways of mathematical work still lack the status of being 

recognized by their communities; hence, the historical subjects sought to explain them in some way in the mathematical 

work of their time. 

2. By revealing the fields of problems that emerged when the new forms of mathematical activity were in the process of 

acquiring an accepted status in their communities. These new field of problems are characterized by the use of the new 

forms of mathematical activity that were hindered by the predominant view that prevented their acceptance; in principle, 

they are fields that had not been previously addressed. 

The primary and secondary sources that contribute to evidence a confrontation in the development of mathematical 

knowledge regarding CIT are presented in Figure 2, an extension of Figure 1, which showcases the totality of works that 

contributed to the configuration of the epistemological hypothesis. 

RESULTS: THE ANALYSIS OF THE ORIGINAL WORKS IMBUED WITH THE NOTION OF 

CONFRONTATION 

Vertical Analysis of the Original Works 

To communicate our findings, under the headings On [author’s name] mathematical activity (year of publication of the original 

work), a summary of the mathematical production of each original work is presented in our own mathematical terms, which are 

as close as possible to the terminology used by the historical subjects. We recommend consulting the original intellectual 

productions for a detailed description of the authors’ mathematical activity. 

Under the headings The how and what for of [author’s name] mathematical activity (year(s) of publication of the work(s)), the 

types of expressions used by the authors are presented to answer the inquiry ‘what type of expressions allowed the authors to 

communicate the mathematical notions that structure the theorem?’ Under the same headings their respective objectives–

highlighted in italics–are configured as possible answers to the question ‘what are these expressions used by the authors 

conveying?’ 

We start the communication of our results with the conclusions derived from the analysis of the first three sections of Cauchy’s 

(1825) memoire in which CIT is addressed. 

On Cauchy’s mathematical activity (1825) 

One of Cauchy’s (1825) main objective is to propose ways to compute integrals comprised between complex numbers. In his 

memoire, Cauchy conceptualizes complex quantities as the simultaneous handling of two real quantities by means of symbolic-

formal expressions of the form 𝑥 + 𝑦𝑖. By relying on this conceptualization, Cauchy extends his definition of integral comprised 

between real numbers–presented in his 1823 Calcul infinitésimal–outside the field of validity where it was configured.  

 

Figure 2. Primary and secondary sources that support the epistemological hypothesis (Source: Authors’ own illustration) 
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By establishing a path of integration 𝛾(𝑡) = 𝜑(𝑡) + √−1𝜒(𝑡), Cauchy shows that the integral comprised between complex 

numbers can be computed through an integral comprised between real numbers by means of the following equality.  

∫ 𝑓(𝑧) 𝑑𝑧
𝑋0+𝑌0√−1

𝑥0+𝑦0√−1

= ∫ [𝜑′(𝑡) + √−1𝜒′(𝑡)]𝑓[𝜑(𝑡) + √−1𝜒(𝑡)]𝑑𝑡
𝑇

𝑡0

 

After assuming that the value of the previous integral is 𝐴 + 𝑖𝐵 and by using a Taylor series, Cauchy proves that this value is 

independent of the curve (restricted to rectangular domains of the form 𝑥𝑜 ≤ 𝑥 ≤ 𝑋; 𝑦𝑜 ≤ 𝑦 ≤ 𝑌) joining the initial and final points 

of integration 𝑥0 + 𝑦0𝑖 and 𝑋 + 𝑌𝑖. Proving that the integral comprised between complex numbers is path independent helps to 

establish CIT, since the integral around closed curves can be conceptualized as the sum of integrals connecting the same initial 

and final points of two paths of integration traversed in opposite directions.  

The how and what for of Cauchy’s mathematical activity (1825) 

Cauchy’s (1825) mathematical activity consists of justifying his statements by means of the simultaneous use of symbolic and 

narrative expressions. Symbolic expressions are understood as equations and functional relations, while narrative expressions 

refer to the description of the author’s symbolic procedure insofar as the narrative expressions describe the passage from one 

equation to the other. 

The simultaneous use of symbolic and narrative expressions allows the author to generalize results from RA through the 

introduction of complex quantities, seen as the simultaneous manipulation of two real quantities. The generalization of the integral 

caught between two real quantities seeks to fix an integration path that connects the initial and final points of the complex integral. 

The substitution of this path, in the variable of integration of the complex function, reduces the complex integral to an integral of a 

complex function comprised between real numbers, i.e., the meaning that Cauchy (1825) attributes to a complex integral is defined 

from what he already knows from the real case. The justification that allows to prove the uniqueness of the value of the integral 

relies on the fact that a small variation in the path of integration does not alter the result of the integral. 

It should be noted that Cauchy (1825) does not relate his symbolic mathematical activity to a graphical setting. CIT is addressed 

through a Taylor series expansion, which allows to prove that the change in the value of the integral after introducing a small 

variation in the path of integration is zero. 

On Briot and Bouquet’s mathematical activity (1875) 

50 years after Cauchy’s (1825) publication, in their book titled Théorie des fonctions elliptiques (Briot & Bouquet, 1875), Briot 

and Bouquet recapitulate the progress that had been made in the theory of complex functions based on Cauchy’s ideas. 

In the chapter Propriétés fondamentales des intégrales définies, the authors prove CIT by conceptualizing complex quantities 

as points in the plane. Prior to the establishment of the theorem, they begin by describing ways in which complex contours can be 

transformed into simple contours, exemplifying the transformations through narrative descriptions and with the display of figures 

(Figure 3). 

To prove the theorem, the integral of a holomorphic function 𝑓 is considered around a simple contour 𝐶. Contour 𝐶 is scaled 

by a factor α, caught between zero and one, to describe the behavior of two integrals of 𝑓 over two concentric simple contours. 

Comparing the values of both integrals shows that the integral of 𝑓over any simple contour 𝐴, where the function is holomorphic, 

depends only on the scaling factor α. The functional dependence of the integral value of the function 𝑓 over the curve 𝐴, and the 

value α, is denoted by ψ(α). 

Briot and Bouquet (1875) proceed to show that ψ′(α) = 0, which implies that ψ(α) is constant. This entails that if the scaling 

factor 𝛼 is reduced to a point, the value of the integral is zero; and since ψ is constant for every value of 𝛼, then the value of the 

integral of 𝑓 is zero despite the integration curve, thus, proving CIT. 

The how and what for of Briot and Bouquet’s mathematical activity (1875) 

Briot and Bouquet (1875) use narrative, symbolic and iconic expressions to communicate their results. Symbolic expressions 

are understood as functional relations and equations in which narrative expressions describe the passage from one equation to 

another, and in turn–when accompanied by figures–serve as a description of what the figure describes. The introduction of figures 

 

Figure 3. Transformations of complex contours (Source: Authors’ own illustration) 
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through narrative expressions, or figures per se, acquires the status of iconic expressions because rather than representing what 

is stipulated in the symbolic setting, they are conceived as a particular way of working with complex quantities. Conceptualizing 

complex quantities by means of points also enables the manipulation of curves in the plane, thus, permitting an alternative 

description of what is elicited in the symbolic setting. 

On Goursat’s mathematical activity (1884, 1900) 

Goursat’s (1884) work proves CIT by means of an argument that requires subdividing region 𝑅 bounded by the curve 𝐶  of 

integration. Subdividing the 𝑅 region yields the computation of the integral 𝑓 over 𝐶 by integrating 𝑓 over curves 𝐶𝑖 (Figure 4) that 

make up the entire curve 𝐶. Goursat (1884) shows that the modulus of the integrals over the curves 𝐶𝑖 can always be made as small 

as desired; and hence, the modulus of the integral of 𝑓 over the curve 𝐶 can be made as small as one wishes. That is to say: 

∀𝜀 > 0, |∫𝑓 𝑑𝑧
𝐶

| < 𝜀 

Thus, obtaining the result concerning the theorem. 

Due to a critique by Pringsheim (Gray, 2000) on the argument of the subdivision used by Goursat (1884) to prove the theorem, 

Goursat’s (1900) work revolves around proving a lemma that allows the justification of the subdivision used in his publication of 

1884. Namely, in his article from 1900 CIT is not proved per se, but the proof of the lemma helps towards its establishment. In 

short, the lemma states that the region bounded by the curve 𝐶 can always be squared in such a way that the length of the sides 

of the squares can be made smaller than an arbitrary positive prefixed quantity. To prove it, Goursat (1900) proceeds by reductio 

ad absurdum, which enables the construction of nested regions through an infinite iterative process. 

Goursat’s (1900) work is inscribed in Cauchy’s mathematical framework concerning CA insofar as the author concludes that “it 

follows that from CAUCHY’s point of view it is sufficient, to construct the theory of analytic functions, to assume the continuity of 

f(z) and the existence of its derivative”2 (Goursat, 1900, p. 16).  

The how and what for of Goursat’s mathematical activity (1884, 1900) 

In the style of Briot and Bouquet (1875), Goursat’s (1884, 1900) arguments are supported by means of symbolic, narrative, and 

iconic expressions. The narrative expressions make possible the subdivision of the region delimited by the integration curve C, as 

well as the construction of an infinite succession of regions in which each new region is contained in the previous one. Since the 

narrative expressions describe the construction of curves and points in the plane, these are related to the use of iconic expressions 

because they allow a conceptualization of complex quantities that distances itself as a means of representation of what is 

stipulated in the symbolic setting. In this sense, the construction of curves in the plane orients the symbolic work insofar as the 

figures are the basis for posing upper bounds for the modules of the integrals under study. 

On Moore’s mathematical activity (1900) 

Unlike Goursat’s (1884) work, where the author proves CIT via a direct process, Moore’s (1900) proof is through an indirect 

process. Moore begins by assuming that 

|∫𝑓 𝑑𝑧
𝐶

| = 𝜂0 > 0 

then, the author considers a square S0  that encompasses the integration curve 𝐶 , and through an infinite iterative process 

subdivides region R0 bounded by 𝐶. This infinite iterative process leads to the construction of nested squared regions Sm, which 

contain sections of the curve 𝐶 (denoted by Cm) and its interior. The author proofs that there is a point that lies in each of the 

regions constructed by the infinite iterative process, which allows him to bound the value of the modulus of the integrals over the 

curves Cm, and this leads him to bound with an arbitrary and positive quantity ε the value of η0, thus, obtaining a contradiction of 

the initial assumption. 

The how and what for of Moore’s mathematical activity (1900) 

Like in the works of the other authors who consider complex quantities as points on the plane, Moore’s (1900) work is mediated 

by narrative, symbolic and iconic expressions. The narrative expressions allow the description of an infinite iterative process in 

which a succession of nested squares are constructed. This succession of squares divides the integration curve 𝐶 and region 𝑅, 

 
2 In the original work it reads as follows: On voit par là qu’en se plaçant au point de vue de CAUCHY il suffit, pour édifier la théorie des fonctions 

analytiques, de supposer la continuité de 𝑓(𝑧) et l’existence de la dérivée. 

 

Figure 4. Types of curves Ci used by Goursat (Source: Authors’ own illustration) 
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which it delimits. We claim that picturing such regions and integration curves is interpreted as the use of iconic expressions since 

these figures are the ones that guide and structure the work with symbolic expressions, such as equations and functional relations.  

Figure 5 depicts our interpretation of Moore’s (1900) narrative expressions that refer to the subdivision of curve 𝐶  and its 

interior 𝑅 through an infinite iterative process.  

Horizontal Analysis of the Original Works 

In the Methods section of this paper it is claimed that the development of the theorem depends on two conceptualizations of 

complex quantities; this result is sustained by identifying how the authors use narrative expressions to communicate their results. 

As shown in the sections titled The how and what for of [author’s name] mathematical activity (year(s) of publication of the work(s)), 

the use of symbolic expressions and iconic expressions depend on how the authors use narrative expressions. For instance, in 

Cauchy’s (1825) memoire the narrative expressions come into play to describe how to transit between equations that are obtained 

by the extension of results in RA. Whereas in the original works from Briot and Bouquet (1875), Goursat (1884), Moore (1900), aside 

from the fact that the narrative expressions describe the passage from one equation to the other, they communicate how the 

complex variable 𝑧 refers to points and curves in the plane. 

The reasons why the authors attended to the theorem are presented in the sections titled On [author’s name] mathematical 

activity (year(s) of publication of the original work(s)). We claim that all the authors were looking for internal consistency of the 

mathematical apparatus, understanding as such that what enabled the production of mathematical knowledge in each original 

work was the development of the mathematical apparatus without the need to attend to other epistemological domains beyond 

mathematics. This search for internal consistency is the proffered answer to the question what was the authors’ purpose to write 

and publish their original mathematical works? A detail description of how the authors attended to the internal consistency of the 

mathematical apparatus of their time periods is presented below. 

In Cauchy’s (1825) memoire, the symbolic-formal conceptualization of complex quantities made it possible to provide internal 

consistency to the mathematical apparatus by generalizing results from RA in which the validation of the results obtained from 

the generalization process is based on a work by analogy in the field of real numbers. Thus, Cauchy’s (1825) method of extension 

and justification does not depend on other epistemological domains outside of mathematics since it is intrinsic to the 

mathematical apparatus of his time. These results are consistent with those reported by Piña-Aguirre and Farfán (2022). Table 1 

summarizes significant elements of this conceptualization; furthermore, it presents ways in which these elements were addressed 

by the author. 

When conceptualizing complex quantities as points in the plane, the search for internal consistency of the mathematical 

apparatus refers to the recollection of results of the mathematical apparatus as well as to the justification and reduction of 

hypotheses of the theorem. Working with this conceptualization requires the recognition that the incorporation of points and 

curves in the plane does not depend on their counterpart in the algebraic setting; figures are accepted as having an epistemic 

 

Figure 5. Subdivision of the curve C and its interior R via an infinite iterative process (Source: Authors’ own illustration) 
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value that is far from serving as means of representation of equations and functional relations. It is important to note that the 1900 

Goursat and Moore’s intellectual productions do not present figures per se; however, the narrative expressions used by the authors 

refer to the construction of nested regions by means of an infinite iterative process. Table 2 presents significant elements of this 

conceptualization; in addition, it presents ways in which these elements were addressed by the authors. 

On the Changes in the Techniques and Fields of Problems That Emerged in the Development of Cauchy’s Integral Theorem 

What has been unveiled so far is the following. In Cauchy’s (1825) memoire, the author extends the definition of definite 

integral comprise between real numbers by working with complex quantities in their symbolic-formal conceptualization 𝑥 + 𝑖𝑦. 

50 years later, Briot and Bouquet (1875) structured a plethora of results in the field of mathematics that took Cauchy’s ideas about 

complex quantities as a starting point; however, these authors attend to them from the graphical-descriptive conceptualization. 

Thanks to this latter conceptualization, in 1900 Goursat justifies one of the hypotheses of the theorem given in his article published 

in 1884. Furthermore, Moore in 1900 presents an alternative proof that does not require the lemma proven by Goursat in that same 

year, which corresponds to a reduction of hypotheses for the establishment of the theorem. 

The authors who conceptualize complex quantities as points in the plane prove the theorem with the use of geometric 

formulations (figures presented by the authors, or those that can be constructed from narrative expressions) that precede and 

support the mathematical work with algebraic formulations (equations, functional relations, literals that represent constants or 

variables). This type of mathematical activity differs from the types of mathematical work that allowed Cauchy to establish the 

theorem. 

Hereinafter, we are concerned with the transition between both conceptualizations, which is problematized through the 

notion of confrontation, made evident from the changes in the techniques used in the transition between both conceptualizations 

and the fields of problems that emerged from the incorporation of the graphical-descriptive conceptualization. 

According to Smithies (1997), in Cauchy’s memoire of 1825 the author “suddenly introduces, without any prior warning […] 

some geometrical language in the description of his results. Before this time he had carefully avoided the use of any such 

language” (p. 98), which is closely related to what we characterize as the use of geometric formulations. To exemplify this use of 

geometric language, in the following excerpt (translated from the original work) the narrative expressions that allude to the use 

of geometric formulations are highlighted in italics. 

9. If, among the equations (7), we eliminate t, we will obtain another one of the form 

(65) 𝐹(𝑥, 𝑦) = 0 

And, assuming that 𝑥 and 𝑦 represent rectangular coordinates, equation (65) will represent a curve drawn in the 𝑥, 𝑦 plane 

between the two points (x0 , y0), (X, Y). Let us further contemplate that the functions x = φ(t), y = χ(t) […] increase or 

decrease from t = t0 to 𝑡 = 𝑇. Under this hypothesis, the value of 𝑦, taken from equation (65) and determined as a function 

of 𝑥, will generally increase from x = x0 to x = X, and the curve (65) will be included in a rectangle formed by four straight 

lines parallel to the axes, namely, those having the equations: 

(66) {
𝑥 = 𝑥0, 𝑥 = 𝑋,
𝑦 = 𝑦0, 𝑦 = 𝑌.

 

Thus, each particular form of the function F(x, y) will provide a particular curve and a corresponding value of the integral 

(4). It should even be noted that this function can change its nature by varying 𝑥, and that consequently the curve F(x, y) =

0 can be transformed into a system of straight lines or curves, starting from the point (x0, y0) and ending at the point (X, Y). 

Then each of the lines in question corresponds to an integral […] in which the extreme values of 𝑥 and 𝑦 represent the 

coordinates of the two ends of this line […] In general, we conceive that one of the lines drawn between point (x0, y0) and 

point (X, Y) extends from point (ε0, η0) to point (ε, η). If this line has the equation: 

Table 1. Symbolic-formal conceptualization of complex quantities (𝑧 = 𝑥 + 𝑖𝑦) 

Elements of this conceptualization How was the element addressed? 

Search for internal consistency of the 

mathematical apparatus 

Proposal of alternative methods to compute the value of integrals (Cauchy, 1814) as well as 

to give meaning to integrals comprised between complex numbers (Cauchy, 1825). 

Generalization 
Equations expressed in the real variable are extended through the introduction of complex 

quantities of the form 𝑥 + 𝑖𝑦. 

Work by analogy Justification of results in CA based on known results in RA. 
 

Table 2. Graphical-descriptive conceptualization of complex quantities (points in a plane) 

Elements of this conceptualization How was the element addressed? 

Iconic work that regulates symbolic work 
Description and/or explicit presentation of points and curves in the plane that precede and 

guide the algebraic work. 

Search for internal consistency of the 

mathematical apparatus 

Compilation of results of the mathematical apparatus (Briot & Bouquet, 1875), justification of 

hypotheses of the theorem (Goursat, 1900) and reduction of hypotheses (Moore, 1900). 

Reductio ad absurdum 
Method through which infinite iterative processes allows the construction of nested regions 

in the plane (Goursat, 1900; Moore, 1900). 
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(74) 𝑦 = 𝜓(𝑥) 

the corresponding integral can be presented in the form: 

(75) ∫ [1 + 𝜓′(𝑥)√−1]𝑓[𝑥 + 𝜓(𝑥)√−1]𝑑𝑥.
𝜀

𝜀0

 

If, however, this line has the equation: 

(76) 𝑥 = 𝜓(𝑦), 

the integral (75) must be replaced by the following: 

(77) ∫ [𝜓′(𝑦) + √−1]𝑓[𝜓(𝑦) + 𝑦√−1]𝑑𝑦
𝜂

𝜂0
 (Cauchy, 1825, p. 55-57). 

The purpose of presenting this translation of Cauchy’s original work is to show evidence of a sudden change in the technique 

used by the author to communicate his results. It should be noted that at the beginning of his memoire–as well as in his previous 

mathematical works concerning CA–Cauchy relies on the symbolic-formal conceptualization of complex quantities, but all of a 

sudden he communicates his results using narrative expressions that allude to geometric formulations that are always 

accompanied by algebraic formulations that describe them symbolically, i.e., the geometric formulations are not detached from 

their counterpart in the algebraic setting. 

To present evidence of the fields of problems that emerged from the recognition of the graphical-descriptive conceptualization 

of complex quantities, we offer some results from Bottazzini and Gray (2013), Bottazzini and Tazzioli (1995), Papadopoulos (2017), 

and Weil (1979) concerning several original works by Cauchy, Puiseux, and Riemann. 

According to Bottazzini and Gray (2013), Cauchy recognizes a geometric setting for complex quantities in his memoire Sur les 

quantités géométriques (Cauchy, 1849). In this memoire, the author defines geometric quantities as radius vectors and explains 

how to do operations–add, subtract, multiply and divide–with them. Cauchy bases his rules for operations through generalization, 

insofar as the notion of geometric quantity includes the notion of algebraic quantity as a special case, which in turn is an extension 

of the notion of arithmetic quantity. Bottazzini and Gray (2013) show that this geometric setting allowed Cauchy to establish 

results that he had previously obtained from the algebraic setting, as is the case of the definition of function in his Mémoire sur les 

fonctions des quantités géométriques (Cauchy, 1853a), and the definition of a continuous function in his work Mémoire sur les 

fonctions continues de quantités algébriques ou géométriques (Cauchy, 1853b). 

Drawing on Cauchy’s ideas about complex integrals, Puiseux’s mathematical works Recherches sur les fonctions algébriques 

(Puiseux, 1850) and Nouvelles recherches sur les fonctions algébriques (Puiseux, 1851) attend to the problem of uniformization of 

algebraic functions (Papadopoulos, 2017). According to Papadopoulos (2017), the problem of uniformization of algebraic 

functions refers to finding methods for converting algebraic functions 𝑢 , of the complex variable 𝑧 , defined by polynomial 

equations of the form 𝑓(𝑢, 𝑧) = 0. In simple terms, the problem of uniformization lies in finding methods to transform multivalued 

functions of a complex variable into single valued ones. Papadopoulos (2017) shows evidence that Puiseux (1850) proposes a 

solution by considering that the value of the single valued functions can be obtained via the path of integration that variable 𝑧 

traverses in the complex plane. In Puiseux (1850) words:  

Let us now conceive that 𝑧 varies in an arbitrary manner starting from the value 𝑐, and reaches another value k […] Thus, 

there will be one, which is first equal to 𝑏, which will pass by infinitely small steps to a determinate value ℎ, which it will 

attain for 𝑧 = 𝑘 (Puiseux, 1850, quoted by Papadopoulos, 2017, p. 213). 

It is noteworthy that the above quotation describes the movement of variable 𝑧 by means of geometric formulations and not 

by the explicit use of algebraic formulations. In the same publication, Papadopoulos (2017) relates a solution to the problem of 

uniformization via the Riemann surface, a mathematical object that was first introduced by Riemann in his doctoral dissertation 

(Riemann, 1851), which had a tremendous influence on the development of the theory of complex functions. 

As shown by Bottazzini and Tazzioli (1995), the general mathematical work of Bernhard Riemann attends to the search of a 

general mathematical formulation of the laws underlying all natural phenomena. For instance, Riemann’s mathematical work 

related to two-dimensional potential theory relies on the theory of complex functions via the Riemann surface, a domain that 

opened “the way to the study of complex functions independently of their analytical expressions” (Riemann, 1851, p. 35, quoted 

by Bottazzini & Tazzioli, 1995, p. 7), which points to the fact that at the heart of the mathematization of potential theory lies a 

conception of the space of complex variables by means of geometric formulations. 

The mathematical work that proliferated with the aid of geometric formulations, detached from their analytical 

conceptualizations, encompasses the production of Riemann’s mathematical knowledge regarding Analysis Situs (now known as 

topology). Weil (1979) suggests that Riemann made use of geometric formulations to communicate his ideas in this area of 

mathematics. As evidence he presents a couple of letters written in 1896 by Betti, described by Bottazzini and Gray (2013) as 

Riemann’s most faithful friend. In said letters the author’s mathematical work is imbued with narrative expressions that refer to 

the description of surfaces as well as their cuts and deformations. A section of one of these letters is presented as an example of 

the geometric formulations (highlighted in italics) conceived by the author. The complete letter can be found in Weil (1979): 
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I have newly talked with Riemann about the connectivity of spaces and have formed an accurate idea of the matter […] 

The interior of an ellipsoid is an SC space. The space bounded by two concentric spheres is not SC, since a third concentric 

sphere, comprised between those two, is not the complete boundary of part of the sphere, while it is closed and wholly 

contained in it. In that space, however, every closed line may be regarded as the entire boundary of a surface contained in 

the space. This space can be reduced to an SC space by a 1-cut, viz., by a line going from the outer to the inner sphere. After 

the cut is made, its points have to be regarded as being outside the space, and the concentric spheres between the two given 

ones are no more contained in the space, since they intersect the cut (p. 94). 

The previous results have a two-fold objective. In the first place it allows us to propose a confrontation in the production of 

mathematical knowledge in CA via the following reconstruction: 

The production of mathematical knowledge regarding Cauchy’s mathematical activity required the author to build knowledge 

relying on a purely symbolic setting in which the symbolic-formal conceptualization of complex quantities allowed the 

generalization of results from RA. The sudden change of technique employed by Cauchy in his 1825 memoire suggest that he 

required a graphical setting–that accompanied his use of algebraic formulations–to further develop his results in CA. Nevertheless, 

incorporating a graphical setting detached from algebraic formulations indicates that the authors who solely used geometric 

formulations had to go against the predominant algebraic setting (in which the symbolic-formal conceptualization played a 

significant role) for the development of the theory of complex functions, the mathematization of natural phenomena, and the 

development of other fields within mathematics. Therefore, we claim that the symbolic-formal conceptualization of complex 

quantities represented a confrontation in the production of mathematical knowledge in CA, insofar as it required to be 

complemented by means of a graphical-descriptive conceptualization that recognizes the use of geometric formulations 

independent of their algebraic formulations.  

In second place, these results, along with the vertical and horizontal analysis of the intellectual productions, enable us to 

categorize different ways in which geometric formulations and algebraic formulations come into play for the communication and 

establishment of mathematical knowledge in CA. These different ways of mathematical work are described below under three 

categories. 

The category geometric formulations as means of representation refers to the way in which Cauchy’s symbolic expressions 

evoke the construction of curves and points in the plane as a means of an alternative representation of what is described in the 

symbolic setting; however, in the production of mathematical knowledge, this type of graphic representations can be disregarded 

because the algebraic formulations subsist without the need of other means of representation. 

The category geometric formulations as means of construction refers to Cauchy’s change of technique to communicate his 

results in which geometric formulations come into play to obtain results in the symbolic setting. It is worthwhile mentioning that 

this category is characterized by the recognition of points and curves in the plane as indispensable to communicate results (hence, 

the reason for Cauchy to suddenly introduce them even though they had never previously appeared as a means of justification), 

which cannot subsist without the use of their analogous representation in the symbolic setting. 

Finally, the category geometric formulations with epistemic value refers to the use of geometric formulations to produce 

mathematical knowledge. This category is characterized by the development of mathematical activity through geometric 

formulations that do not require symbolic representations to be accepted as valid; the geometric formulations themselves enable 

the production of mathematical knowledge. 

It is important to highlight that the category geometric formulations as means of representation was identified in the process 

of understanding, via geometric representations, the purely symbolic mathematical procedure of Cauchy’s original work. On the 

other hand, the category geometric formulations as means of construction was configured by recognizing the change of technique 

used by Cauchy to communicate his results in his 1825 memoire. Finally, the category geometric formulations with epistemic value 

was configured by the recognition of the fields of problems undertaken by Riemann for the development of CA, by the 

development of analysis situs, by the mathematization of natural phenomena, as well as by the mathematical works by Briot and 

Bouquet (1875), Goursat (1884), and Moore (1900). 

DISCUSSION: THE USE OF GEOMETRIC FORMULATIONS IN MATHEMATICS EDUCATION 

RESEARCH IN COMPLEX ANALYSIS 

In Mathematics Education, the studies that have problematized the production of mathematical knowledge in the origins of 

CA (Cantoral & Farfán, 2004; Cantoral et al., 1987; Martínez, 2017) seek to provide an algebraic and arithmetic meaning to the 

logarithm of negative numbers. Although, this type of research has raised awareness of the production of mathematical 

knowledge as a fully human action, these studies do not incorporate any of the categories herein proposed to deal with geometric 

formulations to produce mathematical knowledge in the theory of complex functions. 

Additionally, in the discipline there are studies such as those by Hanke (2020) and Soto-Johnson et al. (2016) that aim to 

understand how professional mathematicians perceive and communicate different mathematical tools and concepts of CA to 

their peers. This kind of research has revealed that attributing geometric meanings to purely algebraic expressions is not a trivial 

task. However, studies such as that of Soto-Johnson (2014) recognize that the arithmetic operations of complex numbers can be 

endowed with a geometric representation as follows: the addition and subtraction of complex numbers corresponds to 

translations of the complex plane; the multiplication of complex numbers corresponds to a dilation and rotation of the complex 
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plane; the division of complex numbers can be interpreted as a reflection and dilation of the complex plane, and finally, the 

conjugation of complex numbers corresponds to a reflection on the real axis in the complex plane. 

The geometric interpretation proposed by Soto-Johnson (2014) is what we recognize as the epistemological basis that allowed 

other research studies to provide a geometric meaning to different mathematical objects of CA. For example, Soto-Johnson and 

Troup (2014) report that university students working with these geometric representations were able to “better understand [...] 

algebraic equations, their components, and the processes used to justify equations algebraically” (p. 124). With the aid of this 

geometric representation, Dittman et al. (2016) sought to develop the geometric knowledge of pre-service secondary mathematics 

teachers by exploring the geometric behavior of complex functions. In Soto-Johnson and Hancock (2019) and Troup et al. (2017), 

this epistemological basis provided a geometric meaning to the concept of derivative of a complex function through the notion of 

Amplitwist (Needham, 1997), a notion that describes how a small circle dilates and rotates around a point. Finally, this 

epistemological basis allowed Oehrtman et al. (2019) and Soto-Johnson and Oehrtman (2022) to address the concept of complex 

integral. 

It should be noted that Soto-Johnson’s (2014) proposal recognizes what we have called geometric formulations as means of 

representation and geometric formulations as means of construction insofar as the geometric representation of the arithmetic of 

complex numbers endows symbolic expressions (equations and algebraic functions) with geometric meaning, in which every 

representation in the complex plane (for example the concept of derivative and the integral concept) is accompanied by algebraic 

formulations by incorporating the degree of rotation and dilation that the complex plane undergoes. Although, our analysis has 

revealed that both categories favored the production of mathematical knowledge in CA, these forms of geometric work were not 

the only ones used by Briot and Bouquet (1875), Goursat (1884), Moore (1900), and Riemann (1851). 

The category geometric formulations with epistemic value refers to the introduction of geometric formulations that precede, 

guide and structure the symbolic mathematical work without involving algebraic formulations, which means that the geometric 

formulations constitute as evidence for mathematical justification. This category is consistent, to some extent, with the type of 

mathematical work described by De Toffoli and Giardino (2015) regarding low dimensional topology; however, we believe that 

studies in Mathematics Education, regarding CA, need to further develop this approach. 

From the above, we recognize that our epistemological hypothesis can be the starting point for the configuration of didactic 

interventions that recognize the different ways of mathematical knowledge production that our hypothesis envisages. In this way, 

our epistemological hypothesis can serve as an epistemological model (Gascón, 2014), in the sense that it serves as a reference 

system for constructing didactic phenomena and for formulating and addressing didactic problems related to them. 

CONCLUSIONS: AN EPISTEMOLOGICAL HYPOTHESIS OF COMPLEX ANALYSIS 

The vertical and horizontal analysis of the original works showed that the production of mathematical knowledge, regarding 

CIT, requires the symbolic-formal and the graphical-descriptive conceptualization of complex quantities; in which both 

conceptualizations are used to provide internal consistency to the mathematical apparatus.  

Interested in the bifurcation identified through the changes of techniques used in the transition between both 

conceptualizations as well as the fields of problems that emerged from the recognition of the graphical-descriptive 

conceptualization of complex quantities, we were lead to the conclusion that the conceptualization of complex quantities via the 

symbolic-formal conceptualization represents a confrontation in the construction of mathematical knowledge should they not be 

complemented by the graphical-descriptive conceptualization from their epistemic (geometric formulations with epistemic value) 

and constructive (geometric formulations as means of construction) aspects, which distance themselves from considering 

geometric formulations only as a means of representation (geometric formulations as means of representation). 

The conjugation of both visions leads to the following epistemological hypothesis: 

The production of mathematical knowledge regarding CIT was enabled by the search for internal consistency of the 

mathematical apparatus via two conceptualizations of complex quantities. The introduction of complex quantities from 

its symbolic-formal conceptualization attends to the search for internal consistency of the mathematical apparatus 

through the generalization of results from RA, as well as by the validation of the results derived from the generalization 

process via a work by analogy in the field of real numbers. However, this conceptualization of complex quantities presents 

itself as a confrontation in the construction of mathematical knowledge if it is not complemented by a graphical-

descriptive conceptualization, which provides internal consistency of the mathematical apparatus through the 

justification and reduction of hypotheses of the theorem. This second conceptualization is characterized by conceiving 

complex quantities as points in a plane, which allows the use of geometric formulations from their epistemic and 

constructive aspects that distance themselves from considering geometric formulations as ways of conviction (via 

representation) of what is sustained by algebraic formulations. 

The epistemological hypothesis implies that the symbolic-formal conceptualization of complex quantities constitutes a 

confrontation in the production of mathematical knowledge related to CIT. However, it is important to recognize that this 

conceptualization is the one that makes it possible to generalize results from RA, as well as the one that favors intrinsic forms of 

validation of the mathematical apparatus. Therefore, it is not being claimed that the symbolic-formal conceptualization must be 

eradicated for an accurate production of mathematical knowledge in CA; rather we recognize that it has its limitations insofar as 

it did not allow the complete development of the theory of complex functions. 
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As further work, it is expected that the epistemological hypothesis will be enriched via empirical data, obtained through a 

learning situation that does not overlook the conjecture. The enrichment of the epistemological hypothesis will allow us to provide 

elements to subvert, by incorporating innate forms of mathematical production in the theory of complex functions, the current 

mathematical school discourse regarding CA. 
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Briot, C., & Bouquet, J. (1875). Théorie des fonctions elliptiques. Parigi. 

Brousseau, B. (2006). Theory of didactical situations in mathematics: Didactique des mathématiques [Mathematics didactics], 1970-

1990. Kluwer.  

Cantoral, R., & Farfán, R. (2004). La sensibilité à la contradiction: Logarithmes de nombres négatifs et origine de la variable 

complexe [Sensitivity to contradiction: Logarithms of negative numbers and origin of the complex variable]. Recherches en 

Didactique des Mathématiques [Research in Didactics of Mathematics], 24(2-3), 137-168. 

Cantoral, R., Farfán, R., Hitt, F., & Rigo, M. (1987). Epistemología del concepto de función logarítmica [Epistemology of the concept 

of logarithmic function]. Matemática Educativa, Revista del Programa Nacional de Formación y Actualización de Profesores de 

Matemáticas [Educational Mathematics, Magazine of the National Program for the Training and Updating of Mathematics 

Teachers], 1(1), 11-17. 

Cauchy, A. (1814). Mémoire sur les intégrales définies [Memory on definite integrals]. Gallica-Math: Œuvres Completès. 

Cauchy, A. (1825). Mémoire sur les intégrales définies, prises entre des limites imaginaires [Dissertation on definite integrals, taken 

between imaginary limits]. Gallica-Math: Œuvres Completès. 

Cauchy, A. (1849). Mémoire sur les quantités géométriques [Memory on geometric quantities]. Gallica-Math: Œuvres Completès. 

Cauchy, A. (1853a). Mémoire sur les fonctions des quantités géométriques [Memory on the functions of geometric quantities]. Gallica-

Math: Œuvres Completès. 

Cauchy, A. (1853b). Mémoire sur les fonctions continues des quantités algébriques ou géométriques [Dissertation on continuous 

functions of algebraic or geometric quantities]. Gallica-Math: Œuvres Completès. 

Cid, E. (2015). Obstáculos epistemológicos en la enseñanza de los números negativos [Epistemological obstacles in teaching negative 

numbers] [Doctoral thesis, Universidad de Zaragoza]. 

D’Azevedo-Breda, A., & Dos Santos, J. (2021). Learning complex functions with GeoGebra. Revista de la Academia Colombiana de 

Ciencias Exactas, Físicas y Naturales [Journal of the Colombian Academy of Exact, Physical and Natural Sciences], 45(177), 1262-

1276. https://doi.org/10.18257/raccefyn.1504 

De Toffoli, S., & Giardino, V. (2015). An inquiry into the practice of proving in low-dimensional topology. In G. Lolli, M. Panza, & G. 

Venturi (Eds.), From logic to practice Italian studies in the philosophy of mathematics (pp. 315-336). Springer. 

https://doi.org/10.1007/978-3-319-10434-8_15  

Dittman, M., Soto-Johnson, H., Dickinson, S., & Harr, T. (2016). Game building with complex-valued functions. PRIMUS, 27(8-9), 

869-879. https://doi.org/10.1080/10511970.2016.1234527 

Farfán, R. (2012). Socioepistemología y ciencia. El caso del estado estacionario y su matematización [Socioepistemology and science. 

The steady state case and its mathematization]. Gedisa. 

Garcia, S., & Ross, W. (2017). Approaching Cauchy’s theorem. PRIMUS, 27(8-9), 758-765. https://doi.org/10.1080/10511970.2016. 

1234525 

https://doi.org/10.4169/amer.math.monthly.124.3.217
https://doi.org/10.1007/978-1-4614-5725-1
https://doi.org/10.1007/s10649-015-9600-8
https://doi.org/10.18257/raccefyn.1504
https://doi.org/10.1007/978-3-319-10434-8_15
https://doi.org/10.1080/10511970.2016.1234527
https://doi.org/10.1080/10511970.2016.1234525
https://doi.org/10.1080/10511970.2016.1234525


 Piña-Aguirre & Farfán Márquez / International Electronic Journal of Mathematics Education, 18(2), em0734 13 / 14 

Gascón, J. (1993). Desarrollo del conocimiento matemático y análisis didáctico: Del patrón análisis-síntesis a la génesis del 

lenguaje algebraico [Development of mathematical knowledge and didactic analysis: From the analysis-synthesis pattern to 

the genesis of algebraic language]. Recherches en Didactique des Mathématiques [Research in Didactics of Mathematics], 13(3), 

295-332. 

Gascón, J. (2014). Los modelos epistemológicos de referencia como instrumentos de emancipación de la didáctica y la historia de 

las matemáticas [The epistemological models of reference as instruments of emancipation of didactics and the history of 

mathematics]. Educación Matemática [Mathematics Education], 25, 99-123. 
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