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ABSTRACT 
The use of computer simulations in the teaching of introductory statistics can help undergraduate 
students understand difficult or abstract statistics concepts. The free software environment R is a 
good candidate for computer simulations since it allows users to add additional functionality by 
defining new functions. In this paper, we illustrate how computer simulations with R are used in 
statistics classrooms and student homework assignments by examples. These examples include 
sampling distributions and the central limit theorem, the t-distributions, confidence intervals, 
hypothesis testing, regression analysis and nonparametric tests. 
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INTRODUCTION 
Statistical analysis of data is increasingly common in the fields of education, economics, biology and 

genetics, geology, healthcare, social psychology, sports and more due to our increasing data collection abilities 
(Best & Kahn, 2006; Haining, 2003; Koh & Tan, 2005; Ray, 2012; Quackenbush, 2001). Therefore, there is a 
growing movement to include statistics in all levels of education. To better prepare students for careers, 
especially in higher education, almost all majors require students to take at least one statistics course. 

Statistics is not simply a collection of methods and techniques. The primary goal of statistical training at 
all levels should be to help students develop statistical thinking. According to Aoyama (2007), most statistics 
students, ranging from middle school to graduate school, have a functional ability to read graphs of data, but 
fewer engage in critical statistical thinking about the data. Brown and Kass (2009) states that statistical 
thinking uses probabilistic descriptions of variability in inductive reasoning and analysis of procedures for 
data collection, prediction, and scientific inference. In statistical inferences, uncertainty is involved when 
people draw a conclusion about a population from a smaller random sample selected from the population 
(Innabi, 2007). Computer simulation is a good tool for students to understand all statistical concepts related 
to uncertainty. For example, Arnholt (1999) describes a procedure to use simulation and graphical output as 
education tools to help students gain a deeper understanding of sampling distributions.  

The tool of computer simulations is an essential part of understanding statistics. The nature of many 
statistical concepts is difficult for students to grasp without visual representations or a hands-on exercise 
(Alias, 2009; Ridgway, Nicholson, & McCusker, 2007). Many basic aspects of introductory statistics involve 
hypothetical ideas, and thus they can only be properly observed through the use of computer simulations (Sigal 
& Chalmers, 2016). When proper visualization and data manipulation is available, students as young as 12 
could develop at least a functional understanding of multivariate data (Ridgway, Nicholson, & McCusker, 
2007). For example, a study conducted by Raffle and Brooks (2005) involved the use of the software called 
MC4G—Monte Carlo Analysis for up to 4 Groups—to help students understand various types of data tests, 
including t and ANOVA F tests. Not only did the use of the MC4G improve students’ exam scores, the students 

https://doi.org/10.29333/iejme/5773
http://creativecommons.org/licenses/by/4.0/
mailto:xzhang2@esu.edu


 
 
Zhang & Maas 
 

 
600  http://www.iejme.com  
 
 
 

also responded positively to a survey asking if they felt that the software improved their understanding of 
statistical concepts like the ANOVA test and type I error (Raffle and Brooks, 2005). Similarly positive findings 
were reported in a more recent study by Mendoza and Mendoza (2018) on computer software for geometry and 
algebra. 

Mills (2002) literature review revealed abundant evidence that computer simulation of statistical concepts 
is a useful teaching method. It recounted articles reporting that computer simulations can be used to help 
teach students about the central limit theorem, t-distribution, confidence intervals, binomial distributions, 
regression analysis, sampling distributions, and hypothesis testing. While the literature review was using 
studies of many different types of computer simulation software, the statistical software R is capable of being 
a learning tool that can help students understand all the statistical concepts that the review covered. 

Smith (2003) outlines some of the benefits and drawbacks of three types of simulation software: web-based 
programs, standalone statistical software, and simulations within pre-existing software. First, web-based 
programs are often free and can be used on any type of computer with internet access. They do not require 
strong computer skills, but are often just simple graphics depicting statistical phenomenon, and may not fully 
illustrate statistical theory without supplemental explanation from the instructor (Smith, 2003). Statistical 
software R is more powerful than these simple programs, and can be used to run simulations, create different 
types of graphs, and calculate various statistics. Second, standalone software can be downloaded and often 
require the students to have a more hands-on learning experience with simulations. This type of software, like 
SPSS and SAS, often has expensive license which makes them hard to access for students that cannot pay for 
them (Smith, 2003). R is similar to these packages, however, it is free to use. Moreover, R is also available for 
all three popular operating systems - Windows, Mac, and Linux. Last, simulations within pre-existing software 
can be found in some software packages such as Microsoft Excel. Microsoft Excel can illustrate some statistical 
concepts and is easy to use for students with weak computer skills, but lacks some essentials that full 
statistical software possesses (Chandrakantha, 2014). For example, Excel cannot properly handle missing 
data or create some statistical simulation illustrations, like boxplots (Chandrakantha, 2014). R, on the other 
hand, is fully equipped to simulate or utilize any statistical concept.  

R can be learned easily by students that have little programming experience. At first glance, it is obvious 
that Software R is not as simple as Microsoft Excel, and does involve coding that can appear daunting to 
students lacking in strong computer skills. However, R also has abundant online resources that can aid 
student learning. R allows students to become familiar with computer programming as well as statistics, and 
may benefit students who also want to develop their computer skills for their career. 

In this paper, a brief introduction to R is covered in Section 2. In Section 3, we use several typical examples 
to illustrate how easy to implement computer simulations using R. These examples include sampling 
distributions and the Central Limit Theorem, t-distributions, confidence intervals, power of a hypothesis test, 
simple linear regression models, and comparison of the sign test and the t-test. And a discussion follows in 
Section 4. 

INTRODUCTION TO R 
R is a free software that is used to compute and graph statistics. It was developed by Robert Gentleman 

and Ross Ihaka. R allows users to practice many different types of statistical techniques, like linear regression, 
ANOVA, classic statistical tests, and much more. It also has thousands of downloadable packages that are 
meant for specific methods and types of statistics. It can be downloaded at http://www.r-project.org/ or one of 
its numerous mirror websites (R Development Core Team, 2017).  

R language is object-orientated. Objects may have attributes, such as name, dimension, and class. This 
means that there are pre-set data types, data structures, and functions that students can use to manipulate 
their own data (R Development Core Team, 2017). The tool of computer simulations allows students to focus 
more on the theory and concepts behind statistics rather than just focusing on memorizing formulas. Students 
then can use R’s pre-set functions to create their own Monte Carlo simulations in order to grasp statistical 
concepts. Sigal and Chalmers (2016) overviewed the essential aspects for writing Monte Carlo simulation code 
in R in detail. It also advertises the use of one of R’s many useful packages that make creating Monte Carlo 
simulations easier.  

http://www.iejme.com/
http://www.r-project.org/


 
 
 INT ELECT J MATH ED 
 

 
http://www.iejme.com   601 
 
 
 

R’s basic data types are character, numeric, integer, complex, and logical. Variables are assigned with R 
objects and the main R objects or data structures include vector, list, matrix, array, data frame, and factor (R 
Development Core Team, 2017). The data structure vector is the only R object to be used in this paper. 

The vector object is one of the most common and basic data structures in R. A vector often contains one or 
more of four types of data: characters, logical, integers and numeric. Numeric vectors, the most common form 
of vector, use numbers. Vectors are incredibly useful for analyzing univariate datasets. Once a univariate data 
set is put into a vector, it can be analyzed in many ways—from simply finding the five number summary, plots 
to conducting hypothesis tests and constructing confidence intervals. 

A list is an R object which can contain multiple data structures, functions and even other lists. Lists are 
useful for creating functions since they allow us to gather a variety of objects under one name. Specifically, 
they are used so that all the information a function returns can come back in the simple form of a single list, 
rather than a meaningless jumble of numbers. 

A matrix is a two-dimensional rectangular data set. All elements in a matrix must have the same data 
type. Matrices can be created using a vector input to the matrix function. This data structure in linear algebra 
is used for representing linear transformations. 

Factors are used to store labels or nominal data as a vector. The labels are always character irrespective 
of whether it is numeric or character or Boolean etc. in the input vector. For instance, a factor may look like, 
x=factor(c(“green”, “yellow”, “red”, “red”))”. By using character vectors instead of numbers or labelled integers, 
factors are already self-described, so it’s easy to understand what the code means when looking at it. 

Data frames are similar to matrices, but different columns can have different data types. A data frame is 
created using the data.frame() function or a data set is a data frame by default after it is imported to R. Arrays 
are similar to matrices but can have more than two dimensions. For more information about data types and 
data structures in R, see Software Carpentry (2017). 

Loops and conditional statements in R allows us to create our own simulations. This is how Monte Carlo 
simulations, which use known parameters to generate random samples of data that can then be used to 
analyze the behavior of certain statistics, are created (Sigal & Chalmers, 2016). R loops include For loop, While 
loop and Repeat loop. Moreover, a conditional statement allows users to perform different computations or 
actions depending on whether a predefined boolean condition is TRUE or FALSE. R conditional statements 
include if(), the combination if() and esle(), ifelse(), and switch(). 

R is a software environment in which many classical and modern statistical techniques have been 
implemented. A few of these are built into the base R environment, but many are supplied as packages. 
Currently, the CRAN package repository features 13767 available packages as of a day in February 2019 
(https://cran.r-project.org/web/packages/). The R packages increase the power of R by improving existing base 
R functionalities, or by adding new ones. 

EXAMPLES OF SIMULATION STUDIES USING R 
In this section, we use several typical examples to illustrate how to conduct computer simulations using R. 

These examples include sampling distributions and the Central Limit Theorem, t-distributions, confidence 
intervals, power of a hypothesis test, simple linear regression models, and comparison of the sign test and the 
t-test. 

Sampling Distributions And The Central Limit Theorem 

The point estimator of a population parameter is a random variable in the context of sampling and thus 
has a distribution. The concept of sampling distribution is critical for statistical thinking. For example, the 
sampling distribution of the sample mean in the general statistics textbook is defined as “the distribution of 
all possible sample means, with all samples having the same sample size taken from the same population”. 
Students in daily life generally observe one sample data set only from an actual or conceptual population. 
Simulations can help students understand sampling distributions much better. 

R can be used to demonstrate sampling distributions using simulations and visual representations, like 
histograms. For example, to study the sampling distribution of the sample mean, instructors and students can 
conduct a simulation study in which the means of thousands of samples with the same size are calculated. 
Furthermore, the effect of the sample size on the sampling distribution can be visualized by different choices 
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of sample sizes. These types of simulations tend to be used to help students understand sampling distributions 
and the Central Limit Theorem (Mills, 2002).  

The following R code is the study of the sampling distribution of the sample mean when a balanced six-
sided die being rolled five times. That is, the observations can be regarded as a sample of size 5 taken from an 
infinite population resulted from rolling the die an infinite amount of times. The simulation study uses 10,000 
samples. 

iter = 10000; 

n=5; #sample size 

means=numeric(); #vector of sample means 

variances=numeric(); #vector of sample variances 

for (i in 1:iter) 

{  

x=sample(1:6, n, replace=T); 

means[i]= mean(x);; 

variances[i]= var(x); 

} 

mean(means); mean(variances); 

hist(means); box(); 

In this example, the data values in each sample can be any numbers from 1-6. For each simulated sample, 
the sample mean is calculated and then stored in the vector of means of length 10,000. And finally, the average 
of the 10,000 sample means can be calculated and the histogram can be produced as well. It can be seen from 
Figure 1 that the histogram is unimodal but not that symmetric if n=5. When the sample size becomes larger, 
the resulted histogram becomes almost symmetric. For example, students can change the value of n in the R 
code to 30. We can draw the conclusion that the larger the sample size is, the more normal the distribution of 
the sample mean will become. Furthermore, the average of the 10,000 of the sample variances stored in the 
vector variances in the R code can be calculated. By comparison, it can be easily seen that the variance of the 
sample mean becomes smaller as the sample size increases. 

The Central Limit Theorem, the most important statistical theory in introductory statistics, states that if 
the sample size n is large (n >30 in most statistics textbooks) and the variance of the population in which 
samples are selected from is finite, the average of all sample means of the same size n from the same population 
will be equal to the mean of the population. Furthermore, all the sample means will follow an approximate 
normal distribution, with variance being equal to the variance of the population divided by the sample size. 
By the above simulation study, students can understand the Central Limit Theorem intuitively. The R 

 
Figure 1. Histograms of 10,000 sample means where each sample is resulted from rolling a balanced six-sided 
die n times. The sample size n=5 for the histogram to the left and n=30 for the histogram to the right 
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simulations let students investigate and find out how the sample size affects the distribution pattern of the 
sample means. 

The T-distributions 

The t-distributions are generally used in small sample statistical inferences given that the samples are 
selected from normal distributions with unknown standard deviations. For example, in 1-sample confidence 
interval estimation or hypothesis testing problems, 

𝑡𝑡 =
𝑋𝑋� − µ
𝑆𝑆
√𝑛𝑛�

, 

where 𝑋𝑋� is the sample mean, 𝑆𝑆 is the sample standard deviation and µ is the population mean, is said to 
have a t-distribution with degrees of freedom n-1. The properties of the t-distribution are generally compared 
with the standard normal distribution. The t-distribution looks very similar to the standard normal 
distribution, but it is slightly more spread out than the normal distribution. It is closer to the standard normal 
distribution as the sample size increases. Although the t-distribution often is taught through traditional 
methods, supplementary lessons in R can help students better grasp some concepts (Mills, 2002).  

Running R simulations can better help students understand how the elements in the student t’s formula - 
particularly sample mean, standard error, and sample size - interact. For example, one might consider 10,000 
samples of same size n from a normal population with mean of 1 and standard deviation of 1.5 and a density 
curve of the 10,000 t statistics can be obtained using the density function in R. Furthermore, the mean and 
standard deviation of these 10,000 statistics can be compared with 0 and 1, respectively. In the following 
simulation study, n=10 and n=30 are used to generate two sets of samples.  

n = 10; #n=30; 

iter=10000; t=numeric(); 

for (i in 1:iter) 

{ 

y = rnorm(n, mean=1, sd=1.5); #Generation of random samples 

ybar = mean(y); #Sample mean 

s = sd(y); #Sample standard deviation 

t[i] = (ybar-1)/(s/sqrt(n)); #t formula 

} 

x=seq(from=-6,to=6,by=0.1); 

plot(x, exp(-x^2/2)/sqrt(2*pi), type= ‘l’, col=‘red’, lwd=2, main=‘Z-density curve 
and the density curve of t, n=10’,ylab=‘density curve’); 

lines(density(t), col=‘blue’, lwd=2); 

mean(t); sd(t); 

In each of the following two graphs in Figure 2, the red curve is the standard normal density curve and 
the blue curve is the density curve of the 10,000 t statistics. It can be seen that both t-density curves are very 
close to the standard normal density curve. As the sample size n is increased from 10 to 30, the t-density curve 
is closer to standard normal. The conclusion can be verified by the means and standard deviations of the two 
sets of the data. Both mean values are very close to zero. But the standard deviations for sample size n=10 
and n=30 were 1.136 and 1.037, respectively. 
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Confidence Intervals 

Students know that confidence interval estimation is better than point estimation since they do not have 
any expectation that the point estimate will be identical to the parameter of interest. However, they have 
difficulty understanding what confidence level means, though some claimed that they can interpret a 
confidence interval intuitively. For example, some students believe that a given parameter is contained in a 
confidence interval with a known probability. The fact that a confidence interval may or may not capture the 
parameter of interest is often confusing for students. The study conducted by Hagtvedt, Jones and Jones (2008) 
found that not a single student in his graduate course had a proper understanding of what a confidence 
interval is. 

Deriving the formula of a confidence intervals using probability statements can be easily understood by 
students. For example, the derivation of a 100(1-α)% t-interval of a population mean µ with normality 
assumption starts with 

𝑃𝑃 �−𝑡𝑡α/2 <
𝑋𝑋� − μ
𝑆𝑆/√𝑛𝑛

< 𝑡𝑡α/2� = 1 − α, 

where 𝑋𝑋� is the sample mean, 𝑆𝑆 is the sample standard deviation, and the t-distribution has degrees of 
freedom n-1. Manipulating the inequalities inside the parentheses results in the form of 

𝑃𝑃 �𝑋𝑋� − 𝑡𝑡α/2 ⋅
𝑆𝑆
√𝑛𝑛

< μ < 𝑋𝑋� + 𝑡𝑡α/2 ⋅
𝑆𝑆
√𝑛𝑛

� = 1 − α. 

The 100(1-α)% confidence interval �𝑋𝑋� − 𝑡𝑡𝛼𝛼/2 ∙
𝑆𝑆
√𝑛𝑛

,𝑋𝑋� + 𝑡𝑡𝛼𝛼/2 ∙
𝑆𝑆
√𝑛𝑛

 � of µ is a random interval since the sample 
mean 𝑋𝑋� is a random variable in repeated sampling. However, the randomness disappears if a confidence 
interval is constructed from a specified sample. Traditionally, statistics textbooks use a diagram where several 
confidence intervals are constructed based on different samples with most of them containing the parameter 
while some do not contain the parameter to illustrate the concept of confidence interval estimation. It is 
helpful. But this type of static image cannot illuminate the dynamic relationship between repeated samples 
and confidence intervals. A computer simulation study makes students observe a resampling process where 
the relationship between these confidence intervals and the parameter is explicit. 

In the following R simulations, 100 samples of same size n=15 are generated from the standard normal 
population. The t.test()function in R is used to produce a 95% confidence interval for each sample. The 100 
confidence intervals are indicated by vertical lines with the true population mean µ=0 shown as a horizontal 
line. Vertical lines that intersect the horizontal line would indicate a confidence interval that contains the true 
population mean. If a confidence interval does not contain the parameter, the confidence interval will be 
colored red. Otherwise, the color will be green. After a confidence interval is plotted, a 0.5 second time is 

 
Figure 2. Comparison of the standard normal density curve and simulated density curves of the t-statistic. 
The red curves are the standard normal density curve and the blue curves are the simulated density curves 
with degrees of freedom 9 and 29, respectively 
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suspended so that students can visualize the relationship between each confidence interval and the parameter 
dynamically.  

n = 15; #sample size 

mu=0; #mu=1; #population mean 

conlevel=0.95; #confidence level 

iter=100;  

count=0; #number of intervals containing mu 

L=numeric(); U=numeric(); 

CI=1:iter; par=rep(mu,iter); 

plot(CI,par,type=“l”,xlim=c(0,iter), ylim=c(-2,2),lwd=2, col=“green”); 

for (i in 1:iter) 

{ 

Sys.sleep(0.5); #suspend 0.5 second 

x=rnorm(n, mean=0, sd=1); #sample from standard normal 

#x=runif(n, min = 0, max = 2); #sample from uniform[0,2] 

interval = t.test(x, conf.level=conlevel)$conf.int; #C.I. 

L[i]= interval[1]; U[i]=interval[2]; 

if (L[i]<=mu && U[i]>=mu) count=count+1; 

time=c(i,i); bds=c(L[i], U[i]); 

if (L[i]>mu | U[i]<mu)  

{lines(time,bds,type=“l”, col=“red”, lwd=2); 

} else { 

lines(time,bds,type=“l”, col=“blue”, lwd=2); 

} 

} 

count; 

count/iter; 

Figure 3 is produced by one of these simulations where 96% of the confidence intervals capture the true 
population parameter. To understand the confidence level, students can increase the number of samples, for 
example, to 10,000, to calculate the empirical coverage which is the number of confidence intervals containing 
the true parameter out of 10,000. Just make sure that the time suspend is removed, otherwise it is too slow. 
For example, one simulation shows that the empirical coverage is 95.052% which is very close to the confidence 
level 95%. The illustration is a solid way to strengthen students’ understanding of the definition of confidence 
intervals. 
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Hypothesis Testing 

Hypothesis testing in general statistics is used to make inference about population parameters. By 
assuming that the null hypothesis (H0) is true, sample information is used to check if there is sufficient 
evidence to reject the null hypothesis in favor of the alternative hypothesis (HA). Computer simulations then 
can be used to explore concepts such as type I error, type II error, and power in hypothesis testing. 

R is able to run hypothesis tests for many different types of population parameters. It has special built-in 
functions that can run a hypothesis test. For example, prop.test() is used to test population proportions, t.test() 
is used to test population means, and var.test() is used to compare two normal population variances. 

The type I error occurs when the null hypothesis is rejected based on information in a random sample while 
the null hypothesis is true. The type II error occurs when the null hypothesis is failed to be rejected while the 
alternative hypothesis is true. The probability of type I error, also called the significance level, is denoted by 
α, and the probability of type II error is denoted by β. α and β are related. Decreasing one will increase another 
if the sample information is fixed. To decrease both α and β, the sample size must be increased. The power of 
a hypothesis test is defined as 1- β which is the probability that the test correctly rejects the null hypothesis 
when a specific alternative hypothesis is true. Again, simulations using R can help students to better grasp 
the relationship between α and β.  

In the following simulation of hypothesis tests of a population mean, 10,000 samples of size n=15 are used. 
The hypotheses to be tested are H0: µ = µ0 = 1.0 versus HA: µ > 1.0. The hypothesis tests are conducted at 
significance level α=0.05. Furthermore, it is assumed that the samples are generated from a normal population 
under the alternative hypothesis with population mean µ=1.5 and variance σ2 = 2. The empirical power of the 
t-test then is calculated as the number of random samples resulting in rejection of the null hypothesis out of 
10,000. One simulation produces an empirical power of 0.3634. When the sample size in increased to n=50, an 
empirical power is 0.7867. Sample size of 100 produces an empirical power of 0.9725. Again, students can 
choose different significance levels or different mean µ values under the alternative hypothesis to investigate 
the relationship between α and β.  

n = 15; df = n-1; alpha = 0.05; counter = 0; 

iter = 10000;   #Looping 10000 times 

for (i in 1:iter) 

{ 

x = rnorm(n, mean=1.5, sd=sqrt(2));    #Data generation  

test = t.test(x, alternative = “greater”, mu=1.0); # t-test 

 
Figure 3. One hundred simulated t-confidence intervals of the standard normal population mean. The blue 
lines are intervals containing the population mean while the red lines are intervals not containing the 
population mean 
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if(test$p.value <= alpha) counter = counter + 1;  

 #Raising counter if H0 is rejected 

} 

power = counter/iter; power; #Calculating empirical power 

Linear Regression Models 

Simple linear regression is a statistical method to summarize and study relationships between two 
quantitative variables: the response variable, denoted by Y, and the predictor variable, denoted by X. The 
simple linear regression model is not a bi-variate distribution of X and Y. Instead, it is about the conditional 
distribution of Y given X=x: 𝑌𝑌|𝑋𝑋=𝑥𝑥𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖 + 𝜀𝜀𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑛𝑛, where 𝛽𝛽0 and 𝛽𝛽1 are two parameters. And in 
general the random errors 𝜀𝜀𝑖𝑖 are assumed to be independent normal with mean 0 and common standard 
deviation, 𝑖𝑖 = 1, … ,𝑛𝑛. From this probabilistic model, the mean of the random variable Y given 𝑋𝑋 = 𝑥𝑥𝑖𝑖 is 𝛽𝛽0 +
𝛽𝛽1𝑥𝑥𝑖𝑖, 𝑖𝑖 = 1, … ,𝑛𝑛. Therefore, the regression line 𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥 is actually the line of means of 𝑌𝑌|𝑋𝑋=𝑥𝑥𝑖𝑖 , where 𝛽𝛽0 is 
the common intercept and 𝛽𝛽1 is the common slope. Introductory statistics textbooks generally uses a diagram 
similar as Figure 4 to illustrate the conditional distribution and the regression line is shown by the blue 
straight line, where the red dots are the mean of the response variable for each specified x value and the red 
curves are the Normal density curve for each conditional distribution. Again, like the diagram of a confidence 
interval, this type of static image cannot illuminate the relationship between the response variable and the 
predictor variable in the conditional distribution. R simulations can help students understand the two 
statistical concepts better.  

In the following simulation study, the two population parameters β0 and β1 are chosen to be 0 and 1, 
respectively. The values of the predictor variable x are set to be -2, -1, 0, 1, and 2. Given each x-value, 𝑥𝑥𝑖𝑖, 10 
realized values of the response variable y are generated from the normal distribution with mean 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖  and 
common standard deviation 1. Thus the sample size is 50, the product of the number conditional distributions, 
5 and the number of the values of the response variable for each population, 10. It can be easily seen from the 
scatter plot that there is a linear relationship between x and y. Thus the regression line is added to the scatter 
plot. Furthermore, the estimate of the regression line, colored by red, using the least squares method can be 
obtained by the lm() function in R. Figure 5 is produced by one of these simulations. Students can change the 
values of the regression coefficients, β0 and β1 and the population variance to run lots of simulations.  

 
Figure 4. Probabilistic model of a simple linear regression. The blue straight line is the true regression line; 
the red dots are the mean of the response variable given a specified x value and the red curves are the Normal 
density curve of each conditional distribution 
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beta0=0; beta1=1;  

xi=c(-2, -1, 0, 1, 2);  

x=numeric(); y=numeric(); k=10; 

for (i in 1:5) 

{ 

x = rbind(x, matrix(rep(xi[i],k), k,1)); 

yi = rnorm(k, mean=beta0+beta1*xi[i], sd=1);  

y = rbind(y, matrix(yi,k,1)); #data generation  

} 

plot(x, y); #scatterplot 

lines(x, beta0+beta1*x, col=‘blue’); #plot the regression line 

b0=lm(y~x)$coefficients[1];  

b1=lm(y~x)$coefficients[2]; #model fit 

lines(x, b0+b1*x, lty=4, lwd=2, col=‘red’); #plot of fitted regression line  

Comparison of Nonparametric Tests and Parametric Tests 

Simulation methods can also be used to compare nonparametric tests with parametric tests. 
Nonparametric tests do not require that samples come from populations with specified distribution 
assumptions, for example normal distributions, or homogeneous variances. Therefore, nonparametric methods 
can be applied to a wide variety of situations. However, nonparametric methods tend to waste information 
because exact numerical data are often reduced to a qualitative form such as ranks and thus they are not as 
powerful as parametric tests if assumptions for parametric tests are satisfied. R simulations can help students 
investigate the power of these two types of tests. The following simulation study compares the power of the 
sign test and t-test when the sample data of size n=15 are from a normal population with mean µ=0.5>0 and 
standard deviation σ=1. Let θ be the parameter describing the center of a population: θ=µ for the t-test and 
θ=median for the sign test. To test H0: θ = 0 versus HA: θ > 0 at the significance level α=0.05, 10,000 samples 
are generated. One simulation produces an empirical power of 0.5825 for the t-test and an empirical power of 

 
Figure 5. Comparison of the true regression line and the least squares line for a simulated data set. The blue 
line is the true regression line and the red dashed line is the least squares regression line fitted based on a 
data set of size 50 with 5 distinct x values 
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0.2647 for the sign test. Students can choose different population mean values under the alternative 
hypothesis to conduct more investigations.  

n=15; alpha=0.05; 

counter1=0; counter2=0; 

iter=10000; 

for (i in 1:iter) 

{ 

x=rnorm(n, mean=0.5, sd=1); #data from Normal distribution  

#x=rgamma(n, shape=0.2, scale = 1); #data from Gamma distribution 

test1=t.test(x, alternative= “greater”, mu=0); 

if (test1$p.value <=alpha) counter1=counter1+1; 

x1=sum(ifelse(x>0,1,0)); #number of positive signs 

y1= sum(ifelse(x<0,1,0)); #number of negative signs 

m=x1+y1; #sample size for the sign test 

if (m<n) print(“sample size is decreased”); 

test2=binom.test(x=x1, n=m, p=0.5, alternative=“greater”); 

if (test2$p.value <=alpha) counter2=counter2+1; 

} 

counter1; counter1/iter; 

counter2; counter2/iter; 

It is expected that the sign test will be more powerful if the conditions for the t-test are not satisfied. 
Students can investigate this aspect by generating data from a highly skewed distribution under the 
alternative hypothesis, for example, Gamma distribution with shape and scale parameter 0.2 and 1, 
respectively. One simulation produces an empirical power of 0.7851 for the t-test and an empirical power of 
1.0000 for the sign test. Students can choose different distributions under the alternative hypothesis to 
conduct more investigations. That is, the sign test is more powerful.  

SUMMARY 
Statistical inferences including confidence interval estimation and hypothesis testing involve uncertainty 

arising from the processes of sampling. It is not appropriate to discuss large amounts of probability theories 
in introductory statistics courses. Therefore, computer simulations are indispensable for students to 
understand most statistical concepts. Nowadays, statistical software is becoming an essential teaching and 
learning tool because it is able to provide students with a hands-on learning experience. Hagtvedt, Jones and 
Jones (2008), Mills (2002), and Raffle and Brooks (2005) have all reported positive outcomes from the use of 
statistical software. Sigal and Chalmers (2016) elaborated the essential aspects for writing Monte Carlo 
simulation code in R. Alias (2009) had positive outcomes for even basic forms of statistical visualizations using 
technology, both in terms of an improvement in student grades and student satisfaction with the class. 

R can be used freely and is particularly strong software to use in a statistics course. It has built-in functions 
that students can use to solve statistical inference problems. Furthermore, students can improve their 
programming skills by conducting more simulation studies following the examples given by their instructor. 
From the experience of the authors, one is an instructor and one is a student, learning R and statistics together 
is feasible in an introductory statistics course. This paper just lists several typical simulation studies in 
introductory statistics, and vector is the only data structure used. Instructors can use this data structure or 
other data structures in R to investigate more simulation studies. 
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