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ABSTRACT 
This paper discusses a proposal for exploration and verification of numerical and algebraic 
behavior correspondingly to Generalized Fibonacci model. Thus, it develops a special attention to 
the class of Fibonacci quaternions and Fibonacci octonions and with this assumption, the work 
indicates an investigative and epistemological route, with assistance of software CAS Maple. The 
advantage of its use can be seen from the algebraic calculation of some Fibonacci’s identities that 
showed unworkable without the technological resource. Moreover, through an appreciation of 
some mathematical definitions and recent theorems, we can understand the current evolutionary 
content of mathematical formulations discussed over this writing. On the other hand, the work 
does not ignore some historical elements which contributed to the discovery of quaternions by 
the mathematician William Rowan Hamilton (1805 – 1865). Finally, with the exploration of some 
simple software’s commands allows the verification and, above all, the comparison of the 
numerical datas with the theorems formally addressed in some academic articles. 
 
Keywords: Fibonacci’s model, historical investigation, Fibonacci quaternions, Fibonacci octonions, 
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INTRODUCTION 
Undoubtedly, the role of the Fibonacci’s sequence is usually discussed by most of mathematics history 

books. Despite its presentation in a form of mathematical problem, concerning the birth of rabbits’ pairs, still 
occurs a powerful mathematical model that became the object of research, especially with the French 
mathematician François Édouard Anatole Lucas (1842–1891). From his work, a profusion of mathematical 
properties became known in the pure mathematical research, specially, from the sixties and the seventies. 

With the emergence of the periodical The Fibonacci Quarterly, we register the force of the Fibonacci’s 
model, with respect to their various ways of generalization and specialization. Thus, we can indicate the works 
of Brother (1965), Brousseau (1971), Horadam (1963; 1967). From these works, besides the well-known the 
second order recurrence formula 𝑓𝑓𝑛𝑛+2 = 𝑓𝑓𝑛𝑛+1 + 𝑓𝑓𝑛𝑛 ,𝑛𝑛 ≥ 0, we also derive the following identity 𝑓𝑓𝑛𝑛 = (−1)𝑛𝑛+1𝑓𝑓𝑛𝑛 =
(−1)𝑛𝑛−1𝑓𝑓𝑛𝑛, for any integer ‘n’. 

Moreover, other studies found other ways for the process of generalization of the Fibonacci’s model. Some 
of them employ methods of Linear Algebra (King, 1968; Waddill & Sacks, 1967), while others explore the 
theory of polynomial functions (Bicknell-Johnson & Spears, 1996; Tauber, 1968). In some articles, experts are 
interested in the extent of the fibonacci function in other numerical fields, like real numbers and complex 
numbers, relatively to its set of subscripts (Reiter, 1993; Scott, 1968). 
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From some trends work around the model, we express our interest in involving the process of Fibonacci’s 
complexification model and the corresponding introduction of imaginary units. From the historical point of 
view, we can recall the Italian mathematician’s work Corrado Segre (1863 – 1924), involving the mathematical 
definition of the bicomplex numbers, indicated by {𝑧𝑧1 + 𝑧𝑧2j|z1 = a + bi, 𝑧𝑧2 = 𝑐𝑐 + 𝑑𝑑𝑑𝑑, j2 = −1} . But, every 
conceptual element in the previous set may be still expressed as 𝑧𝑧1 + 𝑧𝑧2 ⋅ j = a + b ⋅ i + c ⋅ j + d ⋅ i ⋅ j, with the 
real numbers 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 ∈ 𝐼𝐼𝐼𝐼. This abstract entity may also be represented by a + b ⋅ i + c ⋅ j + d ⋅ 𝑘𝑘, with the set 
of operational rules 𝑑𝑑2 = 𝑗𝑗2 = −1, 𝑑𝑑𝑗𝑗 = 𝑗𝑗𝑑𝑑 = 𝑘𝑘.  

Given these elements and others that we will seek to discuss in the next sections, mainly some elements 
with respect to an evolutionary epistemological trajectory and, especially, an historical perspective. In this 
way, it may raise an understanding about the continued progress in Mathematics and some elements, which 
can contribute to an investigation about the quaternions and octonions of Fibonacci’s sequence which is 
customarily discussed in the academic environment, however in relation to their formal mathematical value.  

Moreover, in view of the use of software Maple, we will explore particular situations enabling a heuristic 
thought and not completely accurate and precise with respect to certain mathematical results. Such situations 
involve checking of algebraic properties extracted from current numerical and combinatorial formulations of 
the Fibonacci’s model.  

Thus, in the next section, we consider some elements and properties of quaternions or hyper-complex 
numbers (Kantor & Solodovnikov, 1989). 

SOME HISTORICAL ASPECTS ABOUT THE QUATERNIONS 
In general, a quaternion is a hyper-complex number and is defined by the following equation 𝑞𝑞 = 𝑞𝑞0𝑒𝑒0 +

𝑞𝑞1𝑒𝑒1 + 𝑞𝑞2𝑒𝑒2 + 𝑞𝑞3𝑒𝑒4, where the coefficients 𝑞𝑞0, 𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3 are real, and the set {𝑒𝑒0, 𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒4} is the canonical base for 
the 𝐼𝐼𝐼𝐼4. Here, it satisfies the following rules 𝑒𝑒22 = 𝑒𝑒32 = 𝑒𝑒42 = −1, 𝑒𝑒2𝑒𝑒3 = 𝑒𝑒4 = −𝑒𝑒3𝑒𝑒2. The conjugate of the 
quaternion 𝑞𝑞 = 𝑞𝑞0𝑒𝑒0 + 𝑞𝑞1𝑒𝑒1 + 𝑞𝑞2𝑒𝑒2 + 𝑞𝑞3𝑒𝑒4, is defined by 𝑞𝑞∗ = 𝑞𝑞0𝑒𝑒0 − 𝑞𝑞1𝑒𝑒1 − 𝑞𝑞2𝑒𝑒2 − 𝑞𝑞3𝑒𝑒4 and the norm 𝑁𝑁(𝑞𝑞) =
𝑞𝑞02 + 𝑞𝑞12 + 𝑞𝑞22 + 𝑞𝑞32.  

Halici (2015, p. 1) comments that the quaternions are a number system which extends to the complex 
numbers, first introduced by Sir William Rowan Hamilton (1805 – 1865), in 1843. From the fact 𝑒𝑒2𝑒𝑒3 = 𝑒𝑒4 =
−𝑒𝑒3𝑒𝑒2 we say that the algebra 𝐼𝐼𝐼𝐼 is not commutative but associative, as, (𝑒𝑒2𝑒𝑒3)e4 = 𝑒𝑒2(𝑒𝑒3𝑒𝑒4). On the other 
hand, the historical process, concerning the systematization process of quaternions demanded considerable 
time and effort, above all, the capacity of Hamilton ‘s imagination. We can see this from the comments due to 
Hanson (2006, p. 5).  

Quaternions arose historically from Sir William Rowan Hamilton’s attempts in the midnineteenth 
century to generalize complex numbers in some way that would be applicable to three-dimensional 
(3D) space. Because complex numbers (which we will discuss in detail later) have two parts, one part 
that is an ordinary real number and one part that is “imaginary,” Hamilton first conjectured that he 
needed one additional “imaginary” component. He struggled for years attempting to make sense of an 
unsuccessful algebraic system containing one real and two “imaginary” parts. In 1843, at the age of 
38, Hamilton had a brilliant stroke of imagination, and invented in a single instant the idea of a three-
part “imaginary” system that became the quaternion algebra. According to Hamilton, he was walking 
with his wife in Dublin on his way to a meeting of the Royal Irish Academy when the thought struck 
him 

An element or factor that cannot be disregarded in the previous section concerning the role of the 
mathematical genius in the sense of obtaining an idea or an insight (Hadamard, 1945) in view of the consistent 
formulation of the set of quaternions. Moreover, an essential aspect pointed by Hanson (2006) relates precisely 
to the preparation and formulation of a formal mathematical definition process. We can, for example, see in 

 
Figure 1. Brousseau (1965) discusses the extension’s process to the Fibonacci’s model 
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Figure 2, Hanson comments some explication present in a bronze plaque that mentions explanatory words 
about the glorious and unexpected moment, that the professional mathematician, with a view to establishing 
a new mathematical set which is still studied nowadays (Hanson, 2006). 

SOME HISTORICAL ASPECTS ABOUT THE OCTONIONS 
In view of the formal properties of regular quaternions, mainly its dimensional properties, of course, after 

a certain time, a natural thought refers to increasing the dimensional set. Thus, from this dimensional 
elevation, occurred soon after the emergence of all octonions.  

In this way, let Θ be the octonion algebra over the real number field 𝐼𝐼𝐼𝐼. Keçiolioglu & Akkus (2014, p. 2) 
record that, from the Cayley-Dickson process, we can take any element 𝑝𝑝 ∈ Θ, therefore, it can be written as 
𝑝𝑝 = 𝑝𝑝′ + 𝑝𝑝′′𝑒𝑒, where 𝑝𝑝′,𝑝𝑝′′ ∈ 𝐼𝐼𝐼𝐼 the real quaternion division algebra. On the other hand, the excerpt below shows 
the important role of Hamilton’s student. 

Less well known is the discovery of the octonions by Hamilton’s friend from college, John T. Graves. It 
was Graves’ interest in algebra that got Hamilton thinking about complex numbers and triplets in the 
first place. The very day after his fateful walk, Hamilton sent an 8-page letter describing the 
quaternions to Graves. Graves replied on October 26th, complimenting Hamilton on the boldness of 
the idea, but adding, “There is still some thing in the system which gravels me. I have not yet any clear 
views as to the extent to which we are at liberty arbitrarily to create imaginaries, and to endow them 
with supernatural properties.” And he asked: “If with your alchemy you can make three pounds of 
gold, why should you stop there?” (Conway & Smith, 2004, p. 9) 

Graves contributed to a first impulse to obtain some preliminary ideas about octônios, however, the 
fundamental elements for its definitive establishment, as explained Halici (2015), was awarded by Cayley, 
who defined his algebra, subject to certain formal mathematical rules. In this way, Halici (2015, p. 5) records 

the system of multiplication: �
𝑒𝑒𝑗𝑗2 = −𝑒𝑒0, 𝑗𝑗 = 0,1,2, … 7
𝑒𝑒𝑗𝑗𝑒𝑒𝑘𝑘 = −𝑒𝑒𝑘𝑘𝑒𝑒𝑗𝑗 , 𝑗𝑗 ≠ 𝑘𝑘, 𝑗𝑗, 𝑘𝑘 = 1,2, … ,7.  

Halici (2015, p. 6) comments that is well known the octonions algebra Θ is the real quaternion division 
algebra. Moreover, among all the real division algebras octonion algebra forms the largest normed division 
algebra.  

In a simplified way, the notational point of view, we can write this set Θ = {𝑝𝑝 = 𝑝𝑝′ + 𝑝𝑝′′e|p′p, ′′ ∈ IH}. 
Moreover, the addition and multiplication of any two octonions, 𝑝𝑝 = 𝑝𝑝′+ 𝑝𝑝′′e, 𝑞𝑞 = 𝑞𝑞′ + 𝑞𝑞′′e are defined by 𝑝𝑝 +
𝑞𝑞 = (𝑝𝑝′ + 𝑝𝑝′′e) + (𝑞𝑞′ + 𝑞𝑞′′e) = (p′+ q′) + (p′′ + q′′)e; 𝑝𝑝 ⋅ 𝑞𝑞 = (p′q′ − q′′p′′) + (q′′p′ + 𝑝𝑝′′𝑞𝑞′)e.  

From this point, with the appreciation of some definitions related Fibonacci model, we note a natural style 
of composition properties of the two different mathematical models. One factor that cannot be disregarded 
with respect to the historical time corresponding to the mathematical evolutionary process, especially to the 
sixties, and that contributed to the current research.  

Before concluding, we recall the first articles that explored some fundamental properties, in order to 
formulate and define new conceptual entities. Thus, we find the following definitions. 

 
Figure 2. Hanson (2006, p. 6) comments the iluminatory moment that Hamilton stablishes the rules for the 
quaternions set 
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Definition 1: The nth Fibonacci quaternions is defined by 𝑄𝑄𝑛𝑛 = 𝑓𝑓𝑛𝑛𝑒𝑒0 + 𝑓𝑓𝑛𝑛+1𝑒𝑒1 + 𝑓𝑓𝑛𝑛+2𝑒𝑒2 + 𝑓𝑓𝑛𝑛+3𝑒𝑒4, where the 
coefficients are de Fibonacci numbers. (Horadam, 1963). 

Sometime later, we find a definition that involves the complexity of the process of the Fibonacci numbers 
and, respectively, a concern with their representation in the complex plan. We observe such a characterization 
in the next definition.  

Definition 2: The complex Fibonacci numbers are by 𝐶𝐶𝑛𝑛 = 𝑓𝑓𝑛𝑛 + 𝑓𝑓𝑛𝑛+1𝑑𝑑, where the coefficients are de 
Fibonacci numbers and the imaginary unit 𝑑𝑑2 = −1. (Jordan, 1965). 

From the definition 1, we can determine the following particular values of all quaternions: 𝑄𝑄1 = 𝑒𝑒0 + 𝑒𝑒1 +
2𝑒𝑒2 + 3𝑒𝑒4, 𝑄𝑄2 = 𝑒𝑒0 + 2𝑒𝑒1 + 3𝑒𝑒2 + 5𝑒𝑒4, 𝑄𝑄3 = 2𝑒𝑒0 + 3𝑒𝑒1 + 5𝑒𝑒2 + 8𝑒𝑒4, 𝑄𝑄4 = 3𝑒𝑒0 + 5𝑒𝑒1 + 8𝑒𝑒2 + 13𝑒𝑒4, 𝑄𝑄5 = 5𝑒𝑒0 + 8𝑒𝑒1 +
13𝑒𝑒2 + 21𝑒𝑒4, 𝑄𝑄6 = 8𝑒𝑒0 + 13𝑒𝑒1 + 21𝑒𝑒2 + 34𝑒𝑒4,𝑄𝑄7 = 13𝑒𝑒0 + 21𝑒𝑒1 + 34𝑒𝑒2 + 55𝑒𝑒4, 𝑄𝑄8 = 21𝑒𝑒0 + 34𝑒𝑒1 + 55𝑒𝑒2 + 89𝑒𝑒4, 
𝑄𝑄9 = 34𝑒𝑒0 + 55𝑒𝑒1 + 89𝑒𝑒2 + 144𝑒𝑒4, 𝑄𝑄10 = 55𝑒𝑒0 + 89𝑒𝑒1 + 144𝑒𝑒2 + 233𝑒𝑒4, 𝑄𝑄11 = 89𝑒𝑒0 + 144𝑒𝑒1 + 233𝑒𝑒2 + 377𝑒𝑒4, etc.  

Moreover, some preliminary values for the complex Fibonacci numbers are 𝐶𝐶0 = 0 + 𝑑𝑑,𝐶𝐶1 = 1 + 𝑑𝑑,𝐶𝐶2 = 1 +
2𝑑𝑑,𝐶𝐶3 = 2 + 3𝑑𝑑,𝐶𝐶4 = 3 + 5𝑑𝑑,𝐶𝐶5 = 5 + 8𝑑𝑑,𝐶𝐶6 = 8 + 13𝑑𝑑, etc. Most recently, we find the k-Fibonacci’s definion 
numbers.  

Definition 3: The sequence of the k-Fibonacci numbers are defined by the recurrence relation 𝐹𝐹𝑘𝑘,𝑛𝑛+1 =
𝑘𝑘𝐹𝐹𝑘𝑘,𝑛𝑛 + 𝐹𝐹𝑘𝑘,𝑛𝑛−1,𝐹𝐹𝑘𝑘,0 = 0,𝐹𝐹𝑘𝑘,1 = 1,𝑛𝑛 ≥ 1,𝑘𝑘 ∈ 𝐼𝐼𝐼𝐼. (Fálcon & Plaza, 2007). (see Figure 3).  

Definition 4: The k-Fibonacci quaternion is defined by the recurrence relation 𝑄𝑄𝑘𝑘,𝑛𝑛 = 𝐹𝐹𝑘𝑘,𝑛𝑛 + 𝐹𝐹𝑘𝑘,𝑛𝑛+1𝑑𝑑 +
𝐹𝐹𝑘𝑘,𝑛𝑛+1𝑗𝑗 + 𝐹𝐹𝑘𝑘,𝑛𝑛+2𝑘𝑘, with 𝑛𝑛 ≥ 0. (Ramirez, 2015, p. 204). 

The collection of these mathematical definitions should convey to the reader an understanding about the 
evolutionary process of the Fibonacci model, shown adhered to the other models discussed, even like the 
quaternions and octonions. Soon after, we discuss in detail some invariants mathematical properties, when 
we examine closely each of the previous mathematical definitions. 

THE FIBONACCI QUATERNIONS AND FIBONACCI OCTONIONS’ RESEARCH 
Many investigations have developed a profusion of properties relatively the mathematical definitions 

commented in the last section. In addition, other mathematicians are still interested in the dual form of 
quaternions (Nurkan & Güven, 2015) and octonions (Savin, 2015) or the split of quaternions or octonions that 
we will not discuss here (Halici, 2015). Similarly to what happened way in the sixties, with properties related 
to extension of the subscripts to the integers numbers, Halice (2012), explains the determination of the set of 
numbers {𝑄𝑄−𝑛𝑛}`𝑛𝑛∈𝐼𝐼𝐼𝐼.  

From a corollary discussed by Halice (2012), we can determine the quaternions numbers, with negative 
subscripts, through the following substitution 𝑓𝑓𝑛𝑛 = (−1)𝑛𝑛+1𝑓𝑓𝑛𝑛, we can easily get 𝑄𝑄−𝑛𝑛 = 𝑓𝑓−𝑛𝑛𝑒𝑒0 + 𝑓𝑓−(𝑛𝑛−1)𝑒𝑒1 +
𝑓𝑓−(𝑛𝑛−2)𝑒𝑒2 + 𝑓𝑓−(𝑛𝑛−3)𝑒𝑒4, follow that 𝑄𝑄−𝑛𝑛 = (−1)𝑛𝑛+1𝑓𝑓𝑛𝑛𝑒𝑒0 + (−1)𝑛𝑛𝑓𝑓(𝑛𝑛−1)𝑒𝑒1 + (−1)𝑛𝑛−1𝑓𝑓(𝑛𝑛−2)𝑒𝑒2 + (−1)𝑛𝑛−2𝑓𝑓(𝑛𝑛−3)𝑒𝑒4, or yet 
𝑄𝑄−𝑛𝑛 = (−1)𝑛𝑛+1(𝑓𝑓𝑛𝑛𝑒𝑒0 − 𝑓𝑓𝑛𝑛−1𝑒𝑒1 + 𝑓𝑓𝑛𝑛−2𝑒𝑒2 − 𝑓𝑓𝑛𝑛−3𝑒𝑒4). Finally, from this formula, we determine: 𝑄𝑄0 = 0𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 +
2𝑒𝑒4, 𝑄𝑄−1 = 1𝑒𝑒0 + 0𝑒𝑒1 + 1𝑒𝑒2 + 1𝑒𝑒4, 𝑄𝑄−2 = −1𝑒𝑒0 + 1𝑒𝑒1 + 0𝑒𝑒2 + 1𝑒𝑒4, 𝑄𝑄−3 = 2𝑒𝑒0 − 1𝑒𝑒1 + 1𝑒𝑒2 + 0𝑒𝑒4, 𝑄𝑄−4 = −3𝑒𝑒0 + 2𝑒𝑒1 −
1𝑒𝑒2 + 1𝑒𝑒4, 𝑄𝑄−5 = 5𝑒𝑒0 − 3𝑒𝑒1 + 2𝑒𝑒2 − 1𝑒𝑒4, 𝑄𝑄−5 = 5𝑒𝑒0 − 3𝑒𝑒1 + 2𝑒𝑒2 − 1𝑒𝑒4, 𝑄𝑄−6 = −8𝑒𝑒0 + 5𝑒𝑒1 − 3𝑒𝑒2 + 2𝑒𝑒4, 𝑄𝑄−7 = 13𝑒𝑒0 −
8𝑒𝑒1 + 5𝑒𝑒2 − 3𝑒𝑒4, 𝑄𝑄−8 = −21𝑒𝑒0 + 13𝑒𝑒1 − 8𝑒𝑒2 + 5𝑒𝑒4, 𝑄𝑄−9 = 34𝑒𝑒0 − 21𝑒𝑒1 + 13𝑒𝑒2 − 8𝑒𝑒4, 𝑄𝑄−10 = −55𝑒𝑒0 + 34𝑒𝑒1 − 21𝑒𝑒2 +
13𝑒𝑒4, 𝑄𝑄−11 = 89𝑒𝑒0 − 55𝑒𝑒1 + 34𝑒𝑒2 − 21𝑒𝑒4, 

 
Figure 3. Falcon (2014, p. 149) discusses some properties related to the k-Fibonacci numbers 
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Moreover, in the studies concerned by the k-Fibonacci numbers (see definition 3), some them indicate 
unexpected properties (Fálcon, 2014; 2016). From the definition, we can list some of their initial values, as can 
be seen below.  

From the algebraic expression and by using the mathematical definition formulated by Ramirez (2015), we 
can still obtain: 𝑄𝑄𝑘𝑘,1 = 0 + 𝑑𝑑 + 𝑘𝑘𝑗𝑗 + (𝑘𝑘2 + 1)𝑘𝑘, 𝑄𝑄𝑘𝑘,2 = 𝑘𝑘 + (𝑘𝑘2 + 1)𝑑𝑑 + (𝑘𝑘3 + 2𝑘𝑘)𝑗𝑗 + (𝑘𝑘4 + 3𝑘𝑘2 + 1)𝑘𝑘, 𝑄𝑄𝑘𝑘,3 = (𝑘𝑘2 +
1) + (𝑘𝑘3 + 2𝑘𝑘)i + (𝑘𝑘4 + 3𝑘𝑘2 + 1)j + (𝑘𝑘5 + 4𝑘𝑘3 + 3𝑘𝑘)𝑘𝑘, 𝑄𝑄𝑘𝑘,4 = (𝑘𝑘3 + 2𝑘𝑘) + (𝑘𝑘4 + 3𝑘𝑘2 + 1)i + (𝑘𝑘5 + 4𝑘𝑘3 + 3𝑘𝑘)j +
(𝑘𝑘6 + 5𝑘𝑘4 + 6𝑘𝑘2 + 1)𝑘𝑘, 𝑄𝑄𝑘𝑘,5 = (𝑘𝑘4 + 3𝑘𝑘2 + 1) + (𝑘𝑘5 + 4𝑘𝑘3 + 3𝑘𝑘)i + (𝑘𝑘6 + 5𝑘𝑘4 + 6𝑘𝑘2 + 1)j + (𝑘𝑘7 + 6𝑘𝑘5 + 10𝑘𝑘3 +
4𝑘𝑘)𝑘𝑘, etc. (see definition 4).  

Before concluding the current session, we will announce some theorems that constitute a derivation and 
generalization of Cassini’s identity, formulated by italian mathematician Giovanni Domenico Cassini (1625 – 
1712) (Koshy, 2007). We note, however, that almost of these identities can be proved by mathematical 
induction. The first one characterizes a quaterniotonic version for the classical Cassini’s identity.  

Theorem 1: Let 𝑄𝑄𝑛𝑛 be the Fibonacci Generalized Quaternion. Then, the following formula is the Cassini’s 
identity for this number (𝑛𝑛 ≥ 1). (Akyigit, Kösal, & Todun, 2014, p. 640).𝑄𝑄𝑛𝑛−1𝑄𝑄𝑛𝑛+1 − 𝑄𝑄𝑛𝑛2 = (−1)𝑛𝑛((1 + 𝛼𝛼 − 𝛽𝛽 +
𝛼𝛼𝛽𝛽) + (1 + 𝛽𝛽)𝑑𝑑 + (3 + 𝛼𝛼)𝑗𝑗 + 3𝑘𝑘), where 𝛼𝛼,𝛽𝛽 ∈ 𝐼𝐼𝐼𝐼. 

Corolary 1: For particular numbers 𝛼𝛼 = 1 = 𝛽𝛽 we have 𝑄𝑄𝑛𝑛−1𝑄𝑄𝑛𝑛+1 − 𝑄𝑄𝑛𝑛2 = (−1)𝑛𝑛(2𝑄𝑄1 − 3𝑘𝑘) (Ramirez, 
2015).  

Theorem 2: Let 𝑄𝑄𝑛𝑛 be the Fibonacci Generalized Quaternion. Then, the following formula is the Cassini 
Identity for this number (𝑛𝑛 ≥ 1)𝑄𝑄𝑛𝑛−1𝑄𝑄𝑛𝑛+1 − 𝑄𝑄𝑛𝑛2 = (−1)𝑛𝑛(2𝑄𝑄1 − 3𝑘𝑘). (AKYIGIT; KÖSAL & TOSUN, 2014, p. 
640). 

Theorem 3: For any integer 𝑛𝑛, we have 𝑂𝑂𝑛𝑛−1𝑂𝑂𝑛𝑛+1 − 𝑂𝑂𝑛𝑛2 = (−1)𝑛𝑛(𝑇𝑇0 − 𝑄𝑄0 + 14𝑒𝑒5 + 14𝑒𝑒6 + 7𝑒𝑒7). (Keçilioglu 
& Akkus, 2014, p. 640). 

In the theorem 3, we have indicated the octiotonic Cassini’s version.  
Theorem 4: For any integer 𝑛𝑛, we have 𝑄𝑄𝑛𝑛−1𝑄𝑄𝑛𝑛+1 − 𝑄𝑄𝑛𝑛2 = (−1)𝑛𝑛(𝑇𝑇0 − 𝑄𝑄0 + 14𝑒𝑒5 + 14𝑒𝑒6 + 7𝑒𝑒7). (Keçilioglu 

& Akkus, 2014, p. 640). 
On the other hand, we know a strong tradition in the works in order to use the matrix approach and with 

the goal to derive some generalized results. Indeed, from the Halici (2012, p. 3), we consider the particular 
matrix 𝑄𝑄𝐼𝐼𝐼𝐼 = �𝑄𝑄2 𝑄𝑄1

𝑄𝑄1 𝑄𝑄0
� called the Fibonacci quaternion matrices. From this, we naturally define the 

Quaternion Fibonacci matrices, described for 𝑄𝑄Θ = �𝑂𝑂2 𝑂𝑂1
𝑂𝑂1 𝑂𝑂0

�, where 𝑂𝑂2, 𝑂𝑂1, 𝑂𝑂0 are the Fibonacci octonion 

numbers and, similarly, we consider 𝑄𝑄𝑘𝑘,IH = �
𝑄𝑄𝑘𝑘,2 𝑄𝑄𝑘𝑘,1
𝑄𝑄𝑘𝑘,1 𝑄𝑄𝑘𝑘,0

� the k-Quaternion Fibonacci matrices, where 

𝑄𝑄𝑘𝑘,2, 𝑄𝑄𝑘𝑘,1, 𝑄𝑄𝑘𝑘,0 and the 𝑄𝑄𝑘𝑘,Θ = �
𝑂𝑂𝑘𝑘,2 𝑂𝑂𝑘𝑘,1
𝑂𝑂𝑘𝑘,1 𝑂𝑂𝑘𝑘,0

� the k-Octonion Fibonacci matrices, where 𝑂𝑂𝑘𝑘,2, 𝑂𝑂𝑘𝑘,1, 𝑂𝑂𝑘𝑘,0 are the k-

Fibonacci octonions.  
Surely, there are other forms of representation of Fibonacci quaternions and octonios. However, we see 

that its representation through a matrix, of second order, will be very useful, especially at the time of 
implementation of CAS Maple. By the software help, we will investigate the numerical behavior of some 
particular cases (Cassini’s identity) and thereby conjecture a closed Cassini’s formula, for some particular sets. 

HISTORICAL INVESTIGATIONS WITH THE MAPLE’S HELP 
In this section, we will indicate some basic commands and a command package that let you explore a set 

of numerical operations and algebraic with quaternions and octonions Fibonacci. The software will allow an 
especially verification and numerical exploration for particular sets, with a view to determining and 
formalizing certain properties. The aim of this worksheet is to define some procedures in order to make 
computations in a Fibonacci quaternion and octonion algebras over the field of rational number. Below the 
figure, we see that the Maple’s command package that allows us to explore a series of operations with 
quaternions and octonios. 

The Quaternions package allows the user to construct and work with quaternions in Maple as naturally 
as you can work with complex numbers. The list of procedures may should be inserted 
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> with (DifferencialGeometry): With (LieAlgebra): 
> AD1:=AlgebraLibraryData(“Quaternions”,H); 
> DGsetup(AD!,[‘e’,’i’,’j’,’k’],[‘alpha’]); 
H>H>MultiplicationTable( ); 
 
> with (DifferencialGeometry): With (LieAlgebra): 
> AD1:=AlgebraLibraryData(“Octonions”,H); 
> DGsetup(AD!,[‘e1’,’e2’,’e3’,’e4’,’e5’,’e6’,’e7’],[‘alpha’]); 
H>H>MultiplicationTable( ); 
 
In the Figure 4, we can visualize some preliminar procedures, for the purpose of inserting some particular 

cases.  
Following, we can declare the vectors that we want to work, taking into account a particular set. Below, 

we indicate the following vectors. 
X_0:=evalDG(0*e+1*i+1*j+1*k); (for a Fibonacci quaternion number) 
X_0:=evalDG(0*e+1*i+t*j+(t^2+1)*k); (for a k-Fibonacci quaternion number) 
X_0:=evalDG(0*e1+1*e2+1*e3+2*e4+3*e5+5*e5+8*e6+13e7+21*e8); (for a Fibonacci octonion number) 

 
Figure 4. Quaternions and Octonions Maple’s package 

http://www.iejme.com/


 
 
 INT J ELECT MATH ED 
 

 
http://www.iejme.com   131 
 
 
 

X_0:=evalDG(0*e1+1*e2+t*e3+(t^2+1)*e4+(t^3+2t)*e5+(t^4+3t^2+1)*e6+(t^5+4*t^3+3k)*e7+(t^6+5t^4+
6t^2+1)*e8); (for a k-Fibonacci octonion number). 

The quaternions conjugate is indicated by X_00:=DGconjugate(X_0).  
This list involves all vectors we want to evaluate. Thus, in Figure 4, we declare the following: X_0, 

X_1,X_2,X_3,X_4,X_5,X_6,X_7,X_8,. etc. Soon after, we define a command to evaluate the result of the 
following set of operations as indicated evalDG(X_0.X_2-X_1.X_1); evalDG(X_1.X_3-X_2.X_2); 
evalDG(X_2.X_4-X_3.X_3); evalDG(X_3.X_5-X_4.X_4); evalDG(X_4.X_5-X_5.X_5), etc. 

In all cases, we observed the invariant behavior of the result of the operation indicated. Indeed, we can 
distinguish the same algebraic expression (−1)𝑛𝑛(2𝑒𝑒1 + 2𝑒𝑒2 + 4𝑒𝑒3 + 3𝑒𝑒4), which varies on the signal. 
Furthermore, we note that we can describe it as follows (2𝑒𝑒1 + 2𝑒𝑒2 + 4𝑒𝑒3 + 3𝑒𝑒4) = 2(𝑒𝑒1 + 𝑒𝑒2 + 2𝑒𝑒3 + 3𝑒𝑒4) − 3𝑒𝑒4 =
2𝑄𝑄1 − 3𝑒𝑒4. 

Moreover, the same verification can be appreciated, when we consider the subscripts integers. In this case, 
we can use the formula 𝑄𝑄−𝑛𝑛 = 𝑓𝑓−𝑛𝑛𝑒𝑒0 + 𝑓𝑓−(𝑛𝑛−1)𝑒𝑒1 + 𝑓𝑓−(𝑛𝑛−2)𝑒𝑒2 + 𝑓𝑓−(𝑛𝑛−3)𝑒𝑒4 and, from this, we will indicate some 
specific cases and, thereby, we obtain always the same result. Indeed, in the Figure 5, we get the 
corresponding value of the expression 𝑄𝑄−𝑛𝑛+1𝑄𝑄−𝑛𝑛−1 − 𝑄𝑄−𝑛𝑛2 = (−1)−𝑛𝑛. Similarly to the previous case, we have 
(−1)𝑛𝑛(2𝑒𝑒1 + 2𝑒𝑒2 + 4𝑒𝑒3 + 3𝑒𝑒4) (Figure 6). 
 

 
Figure 5. Numerical verification of Cassini’s identity with the Maple 
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In the Figure 3, we see the values for k-Fibonacci sequence. From the Figure 7, we consider the 
corresponding set of values relatively the k-Quaternions of Fibonacci, indicated by 𝑄𝑄𝑘𝑘,𝑛𝑛 = 𝐹𝐹𝑘𝑘,𝑛𝑛 + 𝐹𝐹𝑘𝑘,𝑛𝑛+1𝑑𝑑 +
𝐹𝐹𝑘𝑘,𝑛𝑛+1𝑗𝑗 + 𝐹𝐹𝑘𝑘,𝑛𝑛+2𝑘𝑘. Similarly, we take the formula 𝑄𝑄𝑘𝑘,−𝑛𝑛 = 𝐹𝐹𝑘𝑘,−𝑛𝑛 + 𝐹𝐹𝑘𝑘,−𝑛𝑛+1𝑑𝑑 + 𝐹𝐹𝑘𝑘,−𝑛𝑛+1𝑗𝑗 + 𝐹𝐹𝑘𝑘,−𝑛𝑛+2𝑘𝑘. From this, we 
always find the expression: 2𝑒𝑒1 + 2𝑒𝑒2 + (𝑡𝑡3 + 4𝑡𝑡)𝑒𝑒3, where 𝑡𝑡 ∈ 𝐼𝐼𝐼𝐼. 

 
Figure 6. Check the corresponding values for integer indices 
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From the Figure 8, we consider the corresponding set of values relatively the k-octonions of Fibonacci, 
indicated by 𝑄𝑄𝑘𝑘,𝑛𝑛 = 𝐹𝐹𝑘𝑘,𝑛𝑛𝑒𝑒1 + 𝐹𝐹𝑘𝑘,𝑛𝑛+1𝑒𝑒2 + 𝐹𝐹𝑘𝑘,𝑛𝑛+1𝑒𝑒3 + 𝐹𝐹𝑘𝑘,𝑛𝑛+2𝑒𝑒4 + 𝐹𝐹𝑘𝑘,𝑛𝑛+3𝑒𝑒5 + 𝐹𝐹𝑘𝑘,𝑛𝑛+4𝑒𝑒6 + 𝐹𝐹𝑘𝑘,𝑛𝑛+5𝑒𝑒7 + 𝐹𝐹𝑘𝑘,𝑛𝑛+6𝑒𝑒8. Similarly, 
we take the formula 𝑄𝑄𝑘𝑘,−𝑛𝑛 = 𝐹𝐹𝑘𝑘,−𝑛𝑛𝑒𝑒1 + 𝐹𝐹𝑘𝑘,−𝑛𝑛+1𝑒𝑒2 + 𝐹𝐹𝑘𝑘,−𝑛𝑛+1𝑒𝑒3 + 𝐹𝐹𝑘𝑘,−𝑛𝑛+2𝑒𝑒4 + 𝐹𝐹𝑘𝑘,−𝑛𝑛+3𝑒𝑒5 + 𝐹𝐹𝑘𝑘,−𝑛𝑛+4𝑒𝑒6 + 𝐹𝐹𝑘𝑘,−𝑛𝑛+5𝑒𝑒7 +
𝐹𝐹𝑘𝑘,−𝑛𝑛+6𝑒𝑒8. From this, we always find the same expression (see Figure 8): 2𝑒𝑒1 + 2𝑒𝑒3 + 2𝑘𝑘𝑒𝑒4 + (2𝑘𝑘2 + 2)𝑒𝑒5 +
(2𝑘𝑘5 + 10𝑘𝑘3 + 8𝑘𝑘)𝑒𝑒6 + (2𝑘𝑘6 + 10𝑘𝑘4 + 10𝑘𝑘2 + 2)𝑒𝑒7 + (𝑘𝑘7 + 6𝑘𝑘5 + 10𝑘𝑘3 + 6𝑘𝑘)𝑒𝑒8, where 𝑡𝑡 ∈ 𝐼𝐼𝐼𝐼. On the other hand, 
the last expression can be rewritten as indicated in the theorem 4. 

 
Figure 7. Checking the corresponding values for the k-Fibonacci quaternions 
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Figure 8. Checking the corresponding values for the Fibonacci octonions 
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To conclude this session, we noted the numerical invariance character in all situations, as we do the 
particular check for a considerable set of subscript interger indices. We recall that, even with a symbolic 
notational system of Fibonacci quaternions and Fibonacci octonions, the verification form of certain properties 
(and identities) may incur any mathematical errors present in some papers. For example, we have the case of 
the conjecture about Catalan’s formula that proved wrong (Polatli & Kesim, 2015; Ramirez, 2015). Certainly, 
technological support can help us to produce conjectures with greater chances of success, given that, 
Mathematics does not progress only by the correct and precise arguments. 

Moreover, with the use of technology we can see, conjecturing and, in some cases, make any corrections 
mathematical formulas. For example, in Catarino (2016, p. 74), we found the general identity �𝑄𝑄p,q,𝑛𝑛(𝑥𝑥)�2 =
2𝑓𝑓𝑝𝑝,𝑞𝑞,𝑛𝑛(𝑥𝑥) − 𝑄𝑄p,q,𝑛𝑛(𝑥𝑥)𝑄𝑄p,q,𝑛𝑛(𝑥𝑥), where the terms 𝑓𝑓𝑝𝑝,𝑞𝑞,𝑛𝑛(𝑥𝑥) and 𝑄𝑄p,q,𝑛𝑛(𝑥𝑥) are, respectively, the (p,q)-Fibonacci 
sequence and the (p,q)-Fibonacci quaternion. On the other hand, we make a correction and assume that 
(𝑄𝑄𝑝𝑝,𝑞𝑞,𝑛𝑛(𝑥𝑥))2 = 2𝐹𝐹𝑝𝑝,𝑞𝑞,𝑛𝑛(𝑥𝑥)𝑄𝑄𝑝𝑝,𝑞𝑞,𝑛𝑛(𝑥𝑥) −𝑄𝑄𝑝𝑝,𝑞𝑞,𝑛𝑛(𝑥𝑥)𝑄𝑄𝑝𝑝,𝑞𝑞,𝑛𝑛(𝑥𝑥). From this, we can explore some particular cases with the 
Maple. In the particular case, we can observe, in the Figure 10, we can see the final result of the operation. 
From this, we can conjeture a we can suggest a correction in the formula indicated by Catarino (2016). 

 
Figure 9. Checking the corresponding values for the k-Fibonacci octonions 
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CONCLUSIONS 
In this work, we seek to emphasize some elements that can improve an historical investigation’s 

conception. In a particular way, we discussed some properties derived from the Fibonacci’s model, specially, 
some actual properties studied by several specialists. Moreover, with the Maple’s help, we have analyzed, case 
by case, the final numerical behavior relatively the Cassini’s generalized formulas, classically indicated by the 
expressions. From the invariant the expression behavior, we can make a statement by mathematical 
induction. 

 
Figure 10. Correction of a algebraic identity relatively to the Fibonacci quaternion 

Table 1. The behavior of the Cassini’s identity for the Generalized Fibonacci Model for ‘n’ any integer number, 
and ‘k’ real number 

Derived forms of Fibonacci’s sequence The Cassini’s generalized expression 
Fibonacci sequence 𝑓𝑓𝑛𝑛−1𝑓𝑓𝑛𝑛+1 − 𝑓𝑓𝑛𝑛

2 
k-Fibonacci sequence 𝑓𝑓𝑘𝑘,𝑛𝑛−1𝑓𝑓𝑘𝑘,𝑛𝑛+1 − 𝑓𝑓𝑘𝑘,𝑛𝑛

2  
Fibonacci quaternions 𝑄𝑄𝑛𝑛−1𝑄𝑄𝑛𝑛+1 − 𝑄𝑄𝑛𝑛

2 
(−1)𝑛𝑛(2 + 2𝑑𝑑 + 4𝑗𝑗 + 3k) (see Figure 6) 

k- Fibonacci quaternions 𝑄𝑄𝑘𝑘,𝑛𝑛−1𝑄𝑄𝑘𝑘,𝑛𝑛+1 − 𝑄𝑄𝑘𝑘,𝑛𝑛
2  

(−1)𝑛𝑛(2 + 2𝑗𝑗 + (𝑡𝑡3 + 4t)k) (see Figure 7) 
Fibonacci octonions 𝑂𝑂𝑛𝑛−1𝑂𝑂𝑛𝑛+1 − 𝑂𝑂𝑛𝑛

2 
(−1)𝑛𝑛(2𝑒𝑒1 + 2𝑒𝑒2 + 4𝑒𝑒3 + 6𝑒𝑒4 + 10𝑒𝑒5 + 2𝑒𝑒6 + 12𝑒𝑒7 + 35𝑒𝑒8) (see Figure 8) 

k- Fibonacci octonions 𝑂𝑂𝑘𝑘,𝑛𝑛−1𝑂𝑂𝑘𝑘,𝑛𝑛+1 − 𝑂𝑂𝑘𝑘,𝑛𝑛
2  

(−1)𝑛𝑛(2𝑒𝑒1 + 2𝑒𝑒3 + 2𝑘𝑘𝑒𝑒4 + (2𝑘𝑘2 + 2)𝑒𝑒5 + (2𝑘𝑘5 + 10𝑘𝑘4 + 10𝑘𝑘2 + 2)𝑒𝑒7 + (𝑘𝑘7 + 6𝑘𝑘5 + 10𝑘𝑘3 + 6𝑘𝑘𝑒𝑒8) 
(see Figure 9) 
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In this trajectory, we cannot disregard the role and the importance of formulation and establishment of 
new mathematical definition. In addition, from a set of four mathematical definitions, we have commented 
some rich properties derived from the Generalized Fibonacci Sequence. Thus, in the time interval of a few 
decades, we can understanding the evolutionary, unstoppable and epistemological progress of this conceptual 
and emblematic object. Furthermore, we enunciated some theorems extracted by the theory of Fibonacci 
quaternions and Fibonacci octonions that are discussed in a restrictive and encoded style, only in the 
mathematical scientific papers.  

Regarding the Maple’s use, we highlight the elements: (i) The software enables verifications of particular 
cases and properties related to the Fibonacci quaternions and Fibonacci octonions; (ii) The software allows the 
verification properties provided by classical theorems related to the Fibonacci quaternions and Fibonacci 
octonions, especially the most recently discussed in the literature; (iii) The software allows the description of 
a lot of special particular cases conditioned by newly formulated mathematical definitions; (iv) The software 
enables verification of properties related to a larger set of integer subscripts indicated in the scientific articles; 
(v) the software enables verification of a large number of individual cases in order to test mathematical 
conjectures; (vi) the software allows the correction of mathematical formulas in order to provide a correct 
description.  

Finally, through the invariance numerical and algebraic of behavior, we can conjecture the intermediate 
steps of the inductive process. Thus, as in all verified cases, determine a simplified Formula for the Cassini’s 
identity Casino and thus avoid certain mathematical errors that might be observed in other studies. Moreover, 
from the historical evolution of the quaternions and octonions’ model, we can understand the current evolution 
of the research process around of the inherited Leonardo Pisano’s model. 
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