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 The benefits of technological and theoretical scaffolding were observed when pre-service teachers aiming to teach 

upper elementary grades were given three learning-based geometrical inquiry tasks involving inscribed circles. 

They were asked to collaboratively examine the accompanying geometrical illustration and data for some new or 

interesting feature and then propose a hypothesis resulting from their observations and prove them.  

Due to the difficulty generally involved in proposing and proving geometrical hypotheses, two forms of scaffolding 

were provided: theoretical scaffolding based on revising previous learning or specific attributes of the given data 

and technological scaffolding in the form of specifically designed GeoGebra applets that allowed dynamic 

observation of the attributes of the geometrical shapes and the changes they underwent during modification.  

We found that the two forms of scaffolding led to relatively pre-service teachers’ high levels of success. They 
exhibited high levels of interest and participation, were engaged in the tasks, and underwent high-quality learning 

processes. In follow-up interviews, they confirmed that the exercise improved their inquiry skills, and developed 

their pedagogical and technological knowledge. 

Keywords: dynamic geometry environment, GeoGebra, inscribed circles, pre-service mathematics teachers, task 

design 
 

INTRODUCTION 

Euclidean geometry has been studied in depth throughout history, from ancient times to the present. Despite its ancient 

origins, mathematicians continue to discover new features. Any discovery of a “new” or unfamiliar property requires proposing a 

hypothesis and then offering a precise mathematical proof.  

The proof process is at the heart of mathematics, and knowledge of how to write and present a proof is vital for pre- service 

and in-service mathematics teachers so that they may impart these skills to their future students (Haj-Yahya, 2022; Hanna, 2000). 

Unfortunately, the school curriculum does not always foster the development of these skills. As a result, knowing how to properly 

write a proof in geometry often poses a challenge for both pre- service and in-service mathematics teachers (Noto et al., 2019; 

Oflaz et al., 2016) either due to their lack of sufficient mathematical knowledge or insufficient experience in the teaching process.  

To improve the teaching and learning processes, it is important to expose teachers how to submit, to examine and to manage 

geometrical situations, analyze specific attributes, for propose a hypothesis, and write a proof (Oxman et al., 2016, 2018; Segal et 

al., 2015, 2017). Overcoming the difficulties inherent in such a task often requires the instructor to offer a meaningful and 

supportive environment such as scaffolding to help and guide the students regarding what attributes are important and to refresh 

their memories with respect to knowledge that they may have (Cirillo & May, 2021; Dove & Hollenbrands, 2013; Tall, 1995).  

Teachers are interested in integrating technology in their teaching, but at the same time they encounter obstacles including 

lack of confidence, lack of ability and skills and lack of access to appropriate sources. All of these are significant and main barriers 

that prevent teachers from integrating technology into teaching. Accessibility to appropriate technological sources includes 

familiarity with technological learning environments, software, and more. Hence, pre-service teacher should receive support 

during being experience in integrating technology, and gradually deal with these obstacles in their training and during their 

teaching (Bingimlas, 2009; Kihoza et al., 2016; Triutami et al., 2020). 

There are myriad of technological tools available today to assist the development of mathematical theoretical knowledge and 

enhance the process of determining attributes and exposing teachers to the variety of technological resources and options 
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available will advance their teaching skills (Krause et al., 2017; Sutiarso et al., 2017). Imparting them positive attitudes toward the 

use of digital media in the classroom will encourage them to adapt new technologies and integrate them into the learning and 

teaching processes. Gaining knowledge and experience regarding the use of technology may give teachers the motivation to 

actually incorporate such technologies into their instruction (Bingimlas, 2009; Lim et al., 2013).  

In this paper, we offer three tasks involving features of circles inscribed in triangles or other polygonal shapes that we believe 

it can be used by teacher educators to expand their students pedagogical and technological geometric knowledge, aiming to teach 

upper elementary grades. Alongside the static illustration that accompanies each task, a dynamic representation (GeoGebra 

applet) to augment the variety of examples suitable for the data related to the static task, was prepared for each. The students (in 

groups) were asked to research the data with the aid of this technological tool and attempt to discover an interesting or novel (to 

them) feature regarding the inscribed circles that had to do with conservation of a property. They were then asked to propose a 

hypothesis, articulate it, and present a complete proof.  

The aims of these activities were to allow students to experience inquiry tasks while working in a dynamic environment, which 

have the potential to develop their pedagogical and technological geometric knowledge. This may raise their awareness of 

geometry as a rich and diverse field and encourage them to offer fertile ground for inquiry activities for their students in school.  

Because the students’ often demonstrated difficulty in conjecturing and pinpointing the aimed-for hypothesis or proving it, 

we submitted students tasks, and in addition, provided two types of scaffolding (Cirillo & May, 2021) to assist students in their 

learning process: One of the scaffolding was technological scaffolding, via GeoGebra software, includes dynamic representations 

of the objects evolved in the given task to guide students’ attention to attributes that remained constant when the vertices and/or 

sides of the triangle were dragged. The second was theoretical scaffolding included data about previously learned concepts that 

related to the tasks such as, pointing out geometric relationships, imparting advice regarding working with the dynamic software, 

and/or reminding them of the use of auxiliary constructions.  

LITERATURE REVIEW 

Current literature offers a number of models to describe knowledge related to integrating technology into teaching and the 

professional development of pre-service and in-service teachers in this context.  

One model is the TPACK (technological, pedagogical, and content knowledge) model (Koehler & Mishra, 2009), which is based 

on terms coined by Shulman (1986) and which is, as the name implies, an amalgamation of technological, pedagogical, and 

content knowledge (TK, PK, and CK, respectively). Specifically, TK is knowledge about the various technologies available for 

teaching in the classroom environment, PK is knowledge about methods and instruction processes, and CK is knowledge of the 

topics relevant to learning or teaching (i.e., the suggested curriculum for each subject). TPACK implies that all these bodies of 

knowledge intersect at various levels of complexity as reflected in the common components of basic knowledge. For example, 

TCK (technological content knowledge) concerns how technology can create different representations for a specific concept. TCK 

demands that the teacher recognizes how using specific technologies can affect learners’ skills and understanding of the relevant 

concepts and content.  

Another model regarding the integration of technology into the design of learning processes is the SAMR (substitution, 

augmentation, modification, redefinition) model (Puentedura, 2013, 2014), which suggests that there are four levels of technology 

application in teaching: substitution, augmentation, modification, and redefinition. “Substitution” means that the technology 

replaces previous tools with new, technological ones, without any functional change. “Augmentation” implies the use of 

technology to replace previous tools while at the same time incorporating additional performance that was not there originally. 

“Modification” means that the technology is integrated into familiar tasks and contributes to the achievement of learning goals. 

At the highest level, “redefinition,” technology leads to output and products that could not have been created otherwise. 

These two model TPACK and SAMR serve as a theoretical framework for studies dealing with the challenges of teachers in 

integrating technologies, as well as in characterizing the knowledge and the competences required for integration of technology 

in teaching (Falloon, 2020; Kihoza et al., 2016),  

Integrating Dynamic Inquiring as Technological Scaffolding 

The use of technology in teaching and learning processes, enables dynamic presentation and exploration of various geometric 

attributes. It provides a quick and much more accurate replacement for traditional geometry drawing tools: pencil, straightedge, 

and compass. 

Implementing technology as a scaffolding such as media scafolding, during geometry teaching and learning processes can 

assist students to complete a geometrical problem, help shorten learning time, and give a strong impetus to understanding 

concepts in geometry (Sutiarso et al., 2017). Submission of an assignment to learners by using scaffoldings can promote 

opportunities for explaining, reviewing, restructuring, and developing conceptual thinking (Dove & Hollenbrands, 2013). Teachers 

can provide scaffolding to support their students, especially those who have difficulty understanding a concept or solving a 

problem. Scaffolding can be provided when a task is beyond the ability of the students and can be adapted to the proximal 

developmental area of the students to enable acquisition of a new skill or new knowledge (Baxter & Williams, 2010). It is important 

to give teachers skills in providing scaffolding so as to be able to provide students with adequate conceptual and strategic 

roadmaps that help them understand the process of inquiry. Knowing how to properly plan for scaffolding reduces the amount of 

spontaneous, unstructured scaffolding they may have to deal with (Saye & Brush, 2002).  
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Research Question  

What are the benefits of learning geometry-based inquiry with technological and theoretical scaffolding to pre-service 

teachers’ professional development?  

METHODOLOGY 

Participants 

The 17 participants were enrolled in college program leading to a B.Ed. in teaching mathematics in upper elementary grades 

and participating in a course devoted to implementing technology into geometry instruction. They were divided into five groups 

of three-four students each. Each group was assigned a task that focused on the attributes of inscribed circles. The tasks were 

presented to students both as hard copy (worksheet) and via applets prepared with GeoGebra dynamic software (The three tasks 

are described below presented with links to GeoGebra applets, which provided as part of the task descriptions.)  

The Process 

In accordance with the framework for incorporating tasks with technology proposed by Trocki and Hollebrands (2018), 

students were given prompts that included questions or directions for inquiry that required written proof. The tasks were 

displayed alongside the applets prepared for the task. This allowed the students to explore the concepts involved in the tasks, 

identify properties, propose hypotheses, and test their hypotheses before proving them (Cirillo & May, 2021).  

The inquiry process of the given tasks took up two 90-minute lessons. In the first stage, the students were asked to explore and 

examine their assigned task, propose a hypothesis based on their work with the GeoGebra applets (by technological scaffolding), 

and prove it. If they felt it necessary, they could request additional information/hints (i.e., theoretical scaffolding) to assist them 

in the proof process.  

In the second stage of the lesson, each group of students presented their hypothesis and its proof to their peers. This was 

followed by a plenary discussion about the process itself, the value of the technological tool, and the contribution this activity 

made to expanding their knowledge as future teachers. 

Task 1-Group 1: Circles Inscribed in a Triangle and the Triangles Formed by a Cevian  

Given: Triangle ∆ABC with inscribed circle (O, r). Cevian AD divide the triangle into two triangles ∆ABD and ∆ACD (Figure 1). 
(S1, r1) and (S2, r2) are the areas of and the radii of the circles inscribed in triangles ∆ABD and ∆ACD, respectively.  

 

Figure 1. Diagram for task 1 (Source: Authors’ own elaboration) 

Let AD=z, DC=y, and BD=x. 

Propose and prove a hypothesis about the relationship between the radii of the circles. 

Process: The students began the inquiry process by examining the objects in the exercise and tried to refresh their knowledge 

about theorems and properties of inscribed circles in a triangle, and then turn to work in technological environment. 

Technological scaffolding: A GeoGebra applet had been prepared where students could drag each of the vertices as well as 

vertex D (https://www.geogebra.org/m/nprbvfvc ). The following dimensions appeared on the screen: r, r1+r2, ⦠ABC, ⦠ACB. 

The students accessed the attached applet. They began by observing individual cases obtained by dragging vertices on the 

screen and looking at the different triangles such as those shown in Figure 2 and Figure 3, respectively. 

Following observation of the individual cases and by dragging the triangles’ vertices and sides and tracking the lengths of the 

sides and radii of the circles, the students noticed that the radius of the circle inscribed in triangle ∆ABC was always smaller than 

the sum of the radii of the other two circles. To verify this supposition, they added a text box that allowed corresponding data to 

be recorded on the screen while dragging the vertices and sides: 

As a result, they proposed the following: 

Hypothesis: r1+r2>r. However, the students in the group found it difficult to prove the hypothesis. 

During the discussion that took place, the students helped each other refresh existing knowledge about the center of a circle 

inscribed in a triangle and that it is the intersection point of the triangle’s bisectors. Nevertheless, they still were not able to use 

https://www.geogebra.org/m/nprbvfvc
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this information to provide a conjecture on how to calculate the lengths of the radii and express what the relationship between 

them might be. 

Theoretical scaffolding (hint): The formula 𝑟 =
𝑆∆
𝑝

 (already learned in a course on Euclidean geometry that preceded the 

present course). This hint enabled students to define each of the radii that appear in the illustration by using the appropriate 

formula and, from there, to successfully prove the hypothesis. 

Proof: 

𝑟1 =
2𝑆1

𝐴𝐵 + 𝑥 + 𝑧
 , 𝑟2 =

2𝑆2

𝐴𝐶 + 𝑦 + 𝑧
 , 𝑟 =

2(𝑆1 + 𝑆2)

𝐴𝐵 + 𝐵𝐶 + 𝐴𝐶
 

From ∆𝐴𝐶𝐷 we obtain 𝑧 < 𝑦 + 𝐴𝐶, then 

𝐴𝐵 + 𝑥 + 𝑧 < 𝐴𝐵 + 𝑥 + 𝑦 + 𝐴𝐶 = 𝐴𝐵 + 𝐵𝐶 + 𝐴𝐶 

And so, 𝑟1 >
2𝑆1

𝐴𝐵+𝐵𝐶+𝐴𝐶
. 

Similarly, 𝑟2 >
2𝑆2

𝐴𝐵+𝐵𝐶+𝐴𝐶
 . Thus 𝑟1+𝑟2 >

2𝑆1+2𝑆2

𝐴𝐵+𝐵𝐶+𝐴𝐶
= 𝑟. 

Task 2. Circles Tangential to Each Other at a Point on the Cevian  

Given: Triangle ∆ABC. Inscribed circle (𝑂, 𝑟) is tangent to the sides of the triangle at points E, F, and G. Cevian AD forms two 

triangles ABC and ACD in which circles (𝑂1, 𝑟1) and (𝑂2, 𝑟2) are inscribed and which are tangential to the Cevian at points 𝑀1 and 

𝑀2 (Figure 4). 

Propose and prove a hypothesis about the relationship between the location of tangent points 𝑀1, 𝑀2, E, and point D. 

Process: The students start to think about the task, and very quick start to work with the applet because they did not find a 

suitable theorem that may help them as a starting point. They were curious about how the locations of points changed when 

changing the triangle size by dragging its vertex. 

Technological scaffolding: A GeoGebra applet (https://www.geogebra.org/m/wqzcmqm4) had been prepared where 

students could drag points A, B, C, and D, thereby changing the side lengths and angles for each triangle. They could thus observe 

that when points D and E coincide, circles (𝑂1, 𝑟1) and (𝑂2, 𝑟2) were tangential to Cevian AD at the same point (Figure 4). The 

 

Figure 2. Examples of changes to the triangle observed using the Applet (Source: Authors’ own elaboration) 

 

Figure 3. Examples similar to Figure 2 with the addition of text boxes (Source: Authors’ own elaboration) 

https://www.geogebra.org/m/wqzcmqm4
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students succeeded to formulate hypothesis, but as they identified difficulties in presenting proof, they asked for a hint that would 

allow them to prove the hypothesis, namely a theoretical scaffolding. 

Hypothesis: When point D of the Cevian coincides with tangent point E, points 𝑀1, 𝑀2will also coincide. 

Theoretical scaffolding (hint): The students were reminded of some geometric relationships. 

Note the following: 

𝐴𝐵 = 𝑐, 𝐵𝐶 = 𝑎, 𝐴𝐶 = 𝑏 

𝑃∆𝐴𝐵𝐶 =
𝑎+𝑏+𝑐

2
, 

which means that, 

𝐴𝐺 = 𝐴𝐹 = 𝑝∆𝐴𝐵𝐶 − 𝑎 
𝐵𝐹 = 𝐵𝐸 = 𝑝∆𝐴𝐵𝐶 − 𝑏 
𝐶𝐸 = 𝐶𝐺 = 𝑝∆𝐴𝐵𝐶 − 𝑐 

Proof: When point D has coincided with point E (Figure 5 and Figure 6), then: 

When point E coincides point D (Figure 4), we can look separately at the two triangles (Figure 5 and Figure 6). According to 

Figure 4, Figure 5, and Figure 6, 

𝐵𝐷 = 𝐵𝐹 = 𝑝∆𝐴𝐵𝐶 − 𝑏 
𝐷𝐶 = 𝐶𝐺 = 𝑝∆𝐴𝐵𝐶 − 𝑐 

 

Figure 4. Diagram for task 2 (Source: Authors’ own elaboration) 

 

Figure 5. D and E coincide in the diagram for task 2-1 (Source: Authors’ own elaboration) 

 

Figure 6. D and E coincide in the diagram for task 2-2 (Source: Authors’ own elaboration) 



6 / 10 Segal & Stupel / International Electronic Journal of Mathematics Education, 18(1), em0726 

According to Figure 5, 

𝐴𝑀1 = 𝑝∆𝐴𝐵𝐷 − 𝐵𝐷 =
𝐴𝐵+𝐴𝐷+𝐵𝐷

2
− 𝐵𝐷 =

𝐴𝐵+𝐴𝐷−𝐵𝐷

2
. 

According to Fig. 5b, 

𝐴𝑀2 = 𝑝∆𝐴𝐶𝐷 − 𝐶𝐷 =
𝐴𝐶+𝐴𝐷+𝐶𝐷

2
− 𝐶𝐷 =

𝐴𝐶+𝐴𝐷−𝐶𝐷

2
. 

According to Figure 3, 

𝐵𝐷 = 𝑝∆𝐴𝐵𝐶 − 𝑏, 𝐶𝐷 = 𝑝∆𝐴𝐵𝐶 − 𝑐 . 

By substituting the expression for BD and DC into the expressions for 𝐴𝑀1 𝑎𝑛𝑑 𝐴𝑀2, we obtain 

𝐴𝑀1 =
𝐴𝐶 + 𝐴𝐷 + 𝐵𝐶 − 𝑝∆𝐴𝐵𝐶

2
, 𝐴𝑀2 =

𝐴𝐶 + 𝐴𝐷 + 𝐵𝐶 − 𝑝∆𝐴𝐵𝐶

2
 

From this we see that 𝐴𝑀1 = 𝐴𝑀2 and therefore the tangent points of each circle to Cevian AD will coincide.  

Task 3: Circles Inscribed in a Quadrilateral and Triangles 

Given: Circle (r, O) is inscribed in quadrilateral ABCD. Diagonal AC is drawn in the quadrilateral to obtain two triangles in which 

(r1, O1) and (r2, O2) are inscribed circles (Figure 7). 

Propose and prove a hypothesis about the relationship(s) between the radii of the circles. 

Process: 

Technological scaffolding: A GeoGebra applet had been prepared to investigate the case of any quadrilateral in which a circle 

with a given radius is inscribed https://www.geogebra.org/classic/kkwr2nue and the radius of the circle can be changed by 

dragging on a slider. Similarly, two of the quadrilateral’s vertices can be dragged, thereby changing the side lengths and angles of 

the two triangles that compose the quadrilateral and changing the radii of the inscribed circles. For each quadrilateral, the values 

of the radii of the inscribed circles were displayed, alongside the sum of the radii of the circles inscribed in the triangles. 

The students observed the changes that came about as a result of dragging the triangle’s vertices and sides and traced the 

lengths of the sides and the circles’ radii. They proposed the following hypothesis: 

Hypothesis: r1+r2 >r. However, they could not prove it. 

Theoretical scaffolding (hint): The lecturer reminded the students of the formula, 𝑟 =
𝑆∆
𝑃

 (previously learned). This hint 

enabled the students to define each of the radii that appear in the illustration using the appropriate formula and, from there, to 

successfully prove the hypothesis. 

Proof: 

𝑟1 =
𝑠𝛥𝐴𝐶𝐷

𝑝𝛥𝐴𝐶𝐷
 , 𝑟2 =

𝑠𝛥𝐴𝐵𝐶

𝑝𝛥𝐴𝐵𝐶
 , 𝑟 =

𝑠𝐴𝐵𝐶𝐷

𝑝𝐴𝐵𝐶𝐷
 

 

𝑟1 + 𝑟2 =
𝑠𝛥𝐴𝐶𝐷

𝑝𝛥𝐴𝐶𝐷
+

𝑠𝛥𝐴𝐵𝐶

𝑝𝛥𝐴𝐵𝐶
 , 𝑟 =

𝑠𝛥𝐴𝐶𝐷

𝑝𝛥𝐴𝐶𝐷
+

𝑠𝛥𝐴𝐵𝐶

𝑝𝛥𝐴𝐵𝐶
 

𝑠𝑖𝑛𝑐𝑒 𝑝𝛥𝐴𝐶𝐷 < 𝑝𝐴𝐵𝐶𝐷 and 𝑝𝛥𝐴𝐵𝐶 < 𝑝𝐴𝐵𝐶𝐷 𝑡ℎ𝑒𝑛, 𝑟1 + 𝑟2 > 𝑟. 

The above attribute is true for any polygon with n sides in which a circle is inscribed. Passing diagonals from any vertex, (n - 2) 

will form triangles in which the radii of the inscribed circles follow:  

𝑟1 + 𝑟2 + 𝑟3 + ⋯ + 𝑟𝑛−2 > 𝑟. 

 

Figure 7. Diagram for task 3 (Source: Authors’ own elaboration) 

https://www.geogebra.org/classic/kkwr2nue
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CONCLUSION 

The activities presented above gave the students a challenge unlike anything they had faced before; it included proposing 

hypotheses based on static data alongside dynamic data provided by the GeoGebra software. The addition of technological and 

theoretical scaffolding, i.e., supplying applets to enable them to observe the given task from a dynamic point of view. It is offering 

hints to allow them to refresh existing knowledge of already-studied theories and formulae or discover an interesting connection 

between the concepts incorporated in the task. In addition, working with GeoGebra applets allowed students to recognize which 

attributes remained constant and thereby formulate suitable hypotheses and prove them. 

The activity improved the students’ mathematical, pedagogical, and technological knowledge, as explained in the following. 

Mathematical-Technological (MT) Knowledge:  

Having to cope with the task in a dynamic environment encouraged the students to revise their knowledge of Euclidean 

geometry such as the formula for finding the value of the radius of an inscribed circle based on the area of the triangle and half its 

circumference (𝑟 =
𝑆∆
𝑝

 ), what conditions the sides of a quadrilateral must meet so that a circle may be inscribed in it, how to find 

the center of an inscribed circle in such a quadrilateral, and the like. In addition, during the support (scaffolding) stages, the 

students successfully expanded their mathematical knowledge with respect to concepts heretofore unknown to them, such as 

those regarding the conservation of properties. This was the result of both the support bestowed by the technological 

environment (which allowed them to explore, measure, and calculate values; propose hypotheses; and prove them) and the 

support bestowed by the theoretical scaffolding. 

Following are some relevant quotes made by some of the students during the concluding discussion: “The technology helped 

me discover mathematical attributes about inscribed circles that were unfamiliar to me. I want my future students to undergo 

such an experience”; “Working in the technological environment contributed to my confidence in understanding the 

mathematical concepts involved in this task. It helped me with the inquiry process.”; “During these activities I underwent a novel 

learning experience in which I discovered new, unfamiliar properties, just like real mathematicians.” 

It is important to select tasks that are related to each other, such as in this case, where all the tasks involved inscribed circles 

and the students were already familiar with the relevant theorems from their high school curriculum. However, the tasks 

presented in this paper allowed them to explore features beyond what were taught in the curriculum and observe the 

mathematics–in particular the geometry–as an all-encompassing, rich subject that they would be able to explore with their 

students later similarly at school. 

Technological Pedagogical Knowledge (TPK) 

The students expanded their TPK as a result of their exposure to a task that was also presented in a technological framework, 

thus allowing the learner to discover interesting phenomena. The students experienced the benefits of technological and 

theoretical scaffolding when solving geometry tasks, an approach that can be applied in the classroom environment in accordance 

with the subject being taught. 

Some relevant comments: “This activity taught me that pupils can be given exercises with data and then be directed to identify 

an unfamiliar geometric feature using technology. I imagine my pupils, too, will find this a fun and productive exercise”. 

Technological, Pedagogical, and Content Knowledge (TPACK) 

Students expanded their mathematical TPACK as a result of working in a technological environment and discovering the 

contribution this environment can make to the processes of research, proposing hypotheses, identifying multiple cases from 

which to speculate about conservation, and more. They appreciated how the technological environment exposes learners to 

dynamic representations of geometric concepts and the different approaches it offers (scaffolding) to support the process of 

building and designing exploratory tasks. 

Some remarks: “Carrying out the inquiry, discovery, and proof processes alongside peers in the technological environment 

helped us–as future teachers–better understand the critical importance of integrating diverse types of knowledge”; “While 

working together on our task, we discovered that with an effective and necessary combination of geometric knowledge, geometry 

instruction, and technological knowledge, we will be able to construct appropriate GeoGebra applets to support learning 

processes.”  

DISCUSSION 

“Teachers should be able to prepare various scaffolding with attention [sic] level of ability” (Sutiarso et al., 2017, p. 100). This 

citation emphasizes the critical role that mathematics teachers should have in integrating technology to support their students’ 

learning processes. The adjustment process that students undergo as a result of scaffolding is of great importance in their ability 

to solve the tasks, so it is imperative that the scaffolding matches students’ prior knowledge and abilities. 

The technological scaffolding that included a geometric-dynamic view of the task allowed them to identify the geometric 

objects integrated in the task, to understand them better, to see the interrelationships and the preserved properties and from that 

to make hypotheses. The theoretical framework that included refreshing or expanding students’ knowledge was a bridge that 

helped overcome the first hurdle in the proof process. Similar to the research of Triutami et al., (2020). the scaffolding helped the 
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students to identify, making connection, explain, reason, and justify generalizations and thereby develop their geometric 

knowledge. 

With respect to the SAMR model (Puentedura, 2013, 2014), having to cope with the task led students to reach new insights of 

how technology can enhance teaching. Being exposed to a task in a technological environment led them along a unique route 

toward discovering a conservation feature and later proving it. The technology enabled them to carry out an authentic exploration 

process by dragging vertices, sides, and angles; measuring geometric concepts; accordingly, observing a wide array of individual 

cases; and eventually arriving and then proving a hypothesis. 

Whether due to a lack of appropriate knowledge or insufficient experience (Oflaz et al., 2016), mathematics students often 

have difficulty presenting proofs in geometry. However, the research process proposed herein, that is, the combination of 

technology and supporting scaffoldings, allowed them to explore, discover, and offer proofs for new and unfamiliar features in 

geometry in a comfortable and non-threatening environment. 

Another important aspect to consider is the challenge presented to teachers in general, and mathematics teachers in 

particular, in the wake of the COVID-19 over the previous two years and the resultant need to introduce distance learning. It is 

important to note that the activities presented above are suitable for online synchronous and asynchronous distance teaching. 

They thus provide a solution for teachers to provide research activities for their students even without a face-to-face meeting in 

the classroom. 

The motivation to give student-teacher familiarity with technology-integrated inquiry assignments was to introduce the 

students to the opportunities for integrating scaffolding in their future teaching, they would be able to “identify, assess, and select 

digital resources for teaching and learning. To consider the specific learning objective, context, pedagogical approach, and learner 

group, when selecting digital resources and planning their use” (Punie & Redecker, 2017, p. 20). 

We have described an example of an activity that clearly demonstrates how technology can be integrated into educational 

processes in general and mathematical education in particular. It supports teaching in the following aspects:  

a) Organization: of the teacher’s work (producing tasks with GeoGebra applets); 

b) Representation: new ways of doing and representing mathematics; 

c) Collaboration: communicating and sharing materials during research; and 

d) Independence: students can work more independently and focus on practicing and assessing previously taught 

mathematical knowledge and skills. 

Pre-service mathematics teachers who undergo the experience of such technological scaffolding while collaborating in solving 

a geometrical task based on inquiry will develop competence in wisely “selecting digital resources” based on the learning 

environment and develop appropriate skills in teaching and learning (Clark-Wilson et al., 2020). 

The tasks presented in this paper can be further explored using a variety of exploration strategies such as “what if not?” (Brown 

& Walter, 1993), and “what if instead” (Segal et al., 2018). Through these exploration strategies the tasks can be linked. For 

example, around Figure 2 and Figure 3 we can ask “what would have happened if we had inscribed another circle tangent to the 

circle inscribed in ABD triangle and the two sides of the triangle ABD as shown later in Figure 7.” 

In this paper we presented high-level geometry tasks that were scaffolded with both dynamic geometry software and 

theoretical information relevant to the task solution. The combination led students to deepen their existing mathematical 

knowledge whether it involved facts, tenets, formulae, or definitions. The supporting scaffolding allowed the students to explain 

the mathematical concepts, processes, or relationships illustrated and led them to go beyond what they first understood from the 

original diagram and be able to generalize the concepts and improve the quality of their geometrical knowledge. 
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