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ABSTRACT. The purpose of this paper is to report on the conception and some results of a long-term 

university research project in Budapest. The study is based on an innovative idea of teaching the basic notions 

of classical and Bayesian inferential statistics parallel to each other to teacher students. Our research is driven 

by questions like: Do students understand probability and statistical methods better by focussing on 

subjective and objective interpretations of probability throughout the course? Do they understand classical 

inferential statistics better if they study Bayesian ways, too? While the course on probability and statistics has 

been avoided for years, the students are starting to accept the “parallel” design. There is evidence that they 

understand the concepts better in this way. The results also support the thesis that students’ views and beliefs 

on mathematics decisively influence work in their later profession. Finally, the design of the course integrates 

reflections on philosophical problems as well, which enhances a wider picture about modern mathematics and 

its applications. 

KEYWORDS. Bayesian statistics, favourable relation, statistical inference, confidence interval, Bayesian 

regions of highest posterior density (RHD). 
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1. INTRODUCTION 

Teacher education – context of the project 

Teacher students in Hungary undergo a thorough mathematical education at university. 

This also includes mathematically orientated courses on probability theory and statistics. The 

two-semester course described in this paper is optional for teacher students; it goes beyond that 

curriculum and is based on the parallel concept of inference. The teaching experiment has been 

going on since 2002. The content and the process of this course have been modified using our 

experience several times. This paper draws conclusions of the experience of past courses. 

Bayesian statistics I–II courses have been held since the academic year 2001/02. The 

courses have been organized for mathematics teacher students who had studied probability and 

some very elementary statistics. The probability course is compulsory and not too popular 

because it is very theoretical. If someone is interested more deeply in probability and statistics, 

then he or she can choose a block of “probability and statistics” during the third and fourth year 

of study. This block contains four courses of 2 hours per semester each. These courses are: 

advanced probability theory, stochastic processes, mathematics of insurance, and introduction to 

mathematical statistics (this course deals with classical statistical concepts only).  

Over the years, this block has been chosen by not more than 3–4 students, sometimes 

nobody was enrolled. It means that we could not organize a control group to teach an alternative 

course for comparison. Most participants of our parallel course had not taken part in this block 

before. The number of participants varied between 8 and 20. 

The Bayesian controversy and reactions to it in the German didactics of probability 

The key idea of our approach towards probability and statistics is that the two different 

ways of inferential statistics should be taught together at school-level, which has also a deep 

impact on the way how to teach the probability part. There was an interesting and intense debate 

about classical and Bayesian ways of inference in teaching statistics at university in the teachers’ 

corner of the American Statistician in 1997 (ASA 1997).  

There were three different directions in this debate.  

• The Classical group is represented amongst others by Moore (1997) who argued for the 

classical way and considered the Bayesian approach as basically inappropriate for 

teaching.  
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• The Bayesian group is led by D. Lindley who is convinced that at universities, 

predominantly the Bayesian approach should be taught.  

• The third and smallest group advocate an integrated way of teaching both approaches 

parallel to each other; see for example Migon & Gamermann (1999). This book gave us 

an impulse to elaborate a parallel introduction for beginners in statistics intended to be 

also used for secondary school teacher students.  

After a long time of experience and thinking, we decided to follow the third way. We 

worked out our arguments as well.  

Our view was also deeply influenced by the collaboration with D. Wickmann and M. 

Borovcnik in the working group “Stochastik in der Schule” of the German Society of Didactics of 

Mathematics. A booklet was published about this work (Borovcnik, Engel, & Wickmann 2001). 

Wickmann (1998) discussed both the philosophical and epistemological background of the 

confrontation between the first two groups. He argues that classical statistics introduced in the 

usual way is the wrong approach, because the frequentist interpretation of statistical results is 

generally false and in some cases is not at all appropriate (Wickmann 1998, pp. 57–60).  

The Bayesian point of view ”attacks” the classical inferential approach because therein 

probability is reduced to solely an objective “chance machine” interpretation: probability may 

only be interpreted by relative frequencies in independently repeated identical random 

experiments. In more general cases of a unique situation, probability may not be used in classical 

theory, according to the Bayesian critique. Taking this argument seriously, any application of 

probability to a situation perceived as unique (not repeatable) would be “forbidden”. There are 

many more such situations than generally acknowledged.  

For teaching, this has unfortunate consequences: either to fudge such situations, or to 

exclude them. Neither is a good situation when one wants students to understand the concepts 

they apply. The next paragraph illustrates why we have gradually become supporters of the third 

way. 
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2. MATHEMATICS FROM AN ONTOLOGICAL POINT OF VIEW 

The status of truth in mathematics 

Ancient Greek mathematicians thought mathematics deals with absolute truth. If the 

axioms are true (they considered them to be true) and the deductions are made in a correct logical 

way then the resulting theorems are true. Accordingly, every proven theorem has to be 

(absolutely) true. Modern mathematics, to the contrary, says nothing about truth. If an axiom 

system is built up, axioms can be completely arbitrary. There is no requirement e.g. about its 

connection to the real world or an imagined truth. Theorems are the consequences of axioms; 

therefore they have no connection to truth either. They can be deduced from axioms by using 

standard logical operations.  

In this modern axiomatic view, a mathematical theory cannot be true or false – this is a 

wrongly posed question; it is only possible to investigate whether the system of axioms is either 

relatively consistent or contradictory. That was not so clear during the 19th Century, which was 

the reason for a long debate about the truth of Euclidean or non-Euclidean Geometry.  

Today, it causes no problem to acknowledge that there are different geometries depending 

on different systems of axioms; the only question might be in which situation they can be used e.g. 

if we want to describe a real situation. However, that is a question about the application and not 

about the theory itself. It is well-known that all different geometries are relatively consistent. We 

sometimes forget about the development of modern mathematics and return to the Greek basis 

and believe in our theorems as absolutely true statements. This step backwards might be one 

reason for the intense debate between classical and Bayesian statisticians; at times, the scientific 

dispute has adopted the character of a religious war.  

The conflict in statistics seems to be quite comparable to the geometry debate of the 19th 

Century. It is a false dichotomy to take either classical or Bayesian statistics. Both of them are 

sustained by consistent theories; the choice between these “schools” comes up only in the 

application. It is very important to know about the mathematical theories, because it gives 

legalization not only to an objectivist interpretation of probability but also to the so-called 

“subjective probability”; the latter concept, too, is embedded within a consistent theory. Without 

such a theoretical justification, the Bayesian approach would not have any ground and could be 

dismissed as an interesting but non-scientific way of thinking. 
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Didactical insights 

There is one further didactical remark to be added to the discussion:  

A theory is always better understood if it is put into contrast to another one. 

Flexible and reflecting knowledge might enhance the individual acquisition of 

concepts.  
 

School mathematics focuses on techniques and algorithms; as a consequence of this, 

pupils often pursue only mechanical procedures and algorithms without reflecting why the chosen 

method works; or why it fails sometimes. Teacher students are no exception to that. To arouse 

their reflection by suitable situations and pertinent discussion might help them to become better 

teachers and to get a deeper insight into mathematics as it really is. Generally, the image about 

mathematics lies very far from the reality in many schools.  

For example, insights into the decimal system of numbers can be deepened if we also 

know other systems such as the binary system in parallel. This didactical principle of diversity 

has guided us also in our statistics teaching plans. These thoughts motivated us to elaborate an 

approach and materials for teacher students, which are suitable to explain both concepts of 

statistical inference without setting priorities between them. In the next section, activities and the 

framework of the above mentioned course are summarized. 

 

 

3. CONTENT OF THE PARALLEL COURSE 

Paving the way – discussing paradoxes and private conceptions 

In the first semester, conditional probability and probability are discussed in the context 

of real problems (see the examples below as well). The approach has four different foci: 

• Learning by paradoxes; clarifying which intuitions are led astray by the paradox and how 

they may be resolved by discussion and introducing clear concepts. 

• Learning by analyzing private heuristics used in probability problems; we check in which 

ways these heuristics work and how and when they might lead to systematic bias. 

• Discussing unusual concepts, which are more open to intuitive interpretation and may 

thus serve as a link between abstract concepts and the world of intuitions. 
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• Enabling a thorough discussion about different interpretations including the historical 

context to avoid unplanned transfer of ideas from the subjective to the objective corner; 

the confusion of ideas from both sides is a potential source for misunderstanding of 

abstract concepts. 

There is a special “Hungarian tradition” of teaching concepts by paradoxes, which may 

be well seen from several books such as Székely (1986). T. Varga (1972) also used paradoxes (see 

the two discs problem later); with primary school pupils like “the long run” paradox, which seems 

to be in conflict with the tendency for searching for patterns in the emergence of random 

sequences after 10 heads in coin tossing, tail seems to be “more probable” for many. 

We were analyzing typical situations where mistakes or misuse were committed by using 

a familiar way of thinking; see the many fallacies in statistics starting with a lot of elementary 

cases such as Linda’s fallacy (Tversky & Kahneman 1973, or the Conjunction fallacy n. d.), or 

Simpson’s paradox (see Malinas & Bigelow 2004, or Morrell 1999), or the Monty Hall dilemma 

(see the Appendix A for the latter). In teaching in class, normally the students were working in 

small groups on problems like Simpson’s paradox; they try to understand what happens here and 

why it is contradictory to our expectation. Or, a story was introduced about Monty Hall and then 

they may think about it with the aim to present their proposed solution of the problem.  

The ensuing debate helps them to understand the situation better and to see how 

their colleagues think differently about the problem.  
 

The students like these paradoxes, which are often chosen as topic in their final report in the 

seminar. It is important to mention they always find a topic for this final report, which in fact is 

optional. One student wrote a diploma thesis about Simpson’s paradox later. Another student 

chose to analyse craps game in casinos using false dice for his thesis. 

Logic and the favourable relation 

The favourable relation is another important topic of the seminar; this concept was 

introduced by Chung (1942). We can consider this relation as a weakened form of logical 

implication: 

• Probabilistically taken, A implies B logically means if you presume (or imagine) that A 

has (fictionally) happened, then the probability that B will happen is 1 (true).  

• Connected to this is the so-called favourable relation: A favours B does not mean that B is 

true if A (fictionally) happens; but B will become more probable if A occurred compared 
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to the case when A has not occurred.  

Falk & Bar-Hillel (1983) first analyzed this notion didactically and found relevant 

connections to the implication of the classical logic (see also Borovcnik 1992). This relation will 

be denoted by 

•  if and only if . BA ↑ )()|( BPABP >

•  if and only if BA ↓ )()|( BPABP <  

BA ⊥ )()|( BPABP = if and only if  • 

The three cases are exhaustive and no two of them can occur simultaneously. The last 

relation is the well-known independence of events. 

After introducing this relation we discuss its most important characteristics. The 

comparison of this relation to the logical implication is important; logical implication is only an 

extreme case of favourable relation expressed numerically by 1)|( =ABP , which means . 

The logical implication follows some routine rules; for example:  

BA⇒

• Asymmetry: is equivalent to ; as not all statements are 

equivalent, the logical implication is asymmetric; i. e., there exist pairs of A and B for 

which it holds:  and 

ABBA ⇒⇒ ∧ BA ⇔

BA ⇒ )( AB ⇒¬ . 

• Transitivity: and then is also true, hence the implication is transitive.  BA ⇒ CB ⇒ CA ⇒

Such relations are deeply imprinted in our mind from early childhood and in primary and 

secondary school. It is very surprising that neither of these rules is valid for the favourable 

relation: 

• It holds  then  the symmetry is true for all three versions of influence; i. e., 

the favourable relation is symmetric.  

BA ↑ AB ↑

• For the transitivity, there is no general rule; sometimes it is true that  and  

implies  but sometimes this does not hold (see Figure 1, or click 

BA ↑ CB ↑

CA ↑ here to see an 

animated graph to demonstrate this).  

http://kreka.web.elte.hu/valszam/variation2/valszam2.html


International Electronic Journal of Mathematics Education / Vol.4 No.3, October 2009  188 

 

Figure 1. A counterexample to show that the favourable relation is not transitive – click to see the animation. 

Advantages of the favourable relation:  

• Students become more familiar in dealing with conditional probabilities 

and their unexpected, counterintuitive features. 

• It allows an intuitive check for formal calculations. 
  

This prepares them to understand the differences between a correct interpretation of 

classical inference results and the often used false interpretation (cf. Gigerenzer 1993); it also 

enhances the subsequent Bayesian way of inference. This relation is useful for becoming familiar 

with conditional probabilities and their special rules as well and to get an intuitive orientation 

about the effects of linking the probabilities to other events (or statements), which later are 

calculated formally by Bayes’ theorem.  

The other advantage of the relation is that it allows an intuitive check for formal 

calculations. It may accompany the analysis of conditional probability problems on the intuitive 

level. A lot of paradoxes may be clarified by using the special properties of this relation, which 

differentiate it from the classical implication. It is important to note that the situation here sets 

itself apart from a strategy that is well-known in mathematics:  

When we generalize a concept, we tend to transfer our rules of the “old” concept to the 

“new”, more general concept. In introducing the real numbers e.g., we strive to preserve the rules 

of counting and calculations among the more general number set as well. This tradition is broken 

here. That is a possible reason why we sometimes perceive a paradox with a new or more general 

concept; the missing transitivity in the case of the favourable relation is such an example.  

http://kreka.web.elte.hu/valszam/variation2/valszam2.html
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Planned discussion of objective and subjective interpretations of probability 

The different interpretations of the notion of probability are another topic on the agenda 

of the course; we analyze them using historical facts and texts as well. We clearly differentiate 

between the so-called “objective” probability notion and the subjective or subjectivist view on 

probability. 

• The objective term of probability can be used only in situations where a real “machine” 

of chance exists, more abstractly formulated, a probability experiment exists, which can 

be repeated under the same circumstances; in those cases the relative frequencies show a 

special kind of stabilization.  

• On the contrary, the “subjective” probability notion is connected to our current level of 

knowledge about aspects not only in probability situations and may therefore be applied 

to a broader spectrum of problems. 

For example if we say “the chance of failing this test is 60%” this is a subjective 

probability because there is no chance related to repeating experiences and to get relative 

frequencies. It is a unique case, as tomorrow we will write a test. Based on information about the 

difficulty level of the test and our preparation efforts, we try to estimate the chance.  

The course in the first semester has its own goals as well but it is an important 

prerequisite for the second semester to inferential statistics where different probability notions 

and conditional probability and its rules are regularly used e. g. by Bayes’ theorem, which is 

discussed both for discrete and continuous distributions.  

Classical and Bayesian methods in parallel 

In the second semester, such kinds of real problems are introduced which can suitably be 

analyzed from both points of view. In that part we use, amongst others, the course elaborated by 

Wickmann (1991) but instead of only criticizing the classical method we are building up both 

constructions and solving problems using the classical and the Bayesian method in parallel. At the 

end we discuss the different solutions and their interpretations.  

In this part of the course, the different mathematical techniques gain momentum. The 

numerical solution of a problem sometimes takes several weeks using the two methods together, 

which occasionally requires totally different mathematical tools for each of the approaches. It 

should be noted that we always use mathematical methods first and only later turn to computers 

for the calculations. It is worth the effort and time we invest in the conceptual analysis because 
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the students recognize several connections between stochastics and other topics of mathematics. 

This might reduce the outstanding and singular role of stochastics within mathematics and 

strengthen the self-confidence of students in teaching probability and statistics later.  

In the classical approach, parameters are simply constants, which are unknown. For the 

Bayesian approach, these parameters, as unknown, have to have a prior distribution. With the help 

of Bayes’ theorem, this prior distribution is updated when data become known from a random 

sample. While the process of applying the theorem involves mathematical technicalities, for some 

nice examples the mathematics turns out to be quite easy in practice. However, for the bulk of 

real problems, these technicalities have to be solved by suitable software. VisualBayes program is 

an easy tool for this purpose (Wickmann 2006); it can be used not only on PCs but on graphical 

calculators as well as it is based on the computer algebra system Derive.  

Regarding the usage of the methods from the two schools, the following “rule of thumb” 

might help for orientation, which method might be preferred:  

• If we have a unique situation we should preferably use the Bayesian approach; in this 

case we have to express our special information or pre-knowledge about the parameters 

by a suitable prior distribution.  

• In the so-called production line (moving-band) situation we tend to use the classical 

methods following Fisher, or Neyman and Pearson.  

Used information always has to be “objective”: 

• How to judge that information is objective? 

• How to integrate qualitative knowledge? 
  

In the “pure” classical approach we are not allowed to build in our “pre-knowledge” into 

the process of modelling. Used information always has to be “objective”, which means it has to 

be independent from the person who models the problem with the aim to derive an estimate or to 

find and justify a decision. Information – at least potentially – has to be open for scrutiny by a 

repeated experiment from which one could check the assumed probabilities or probability 

distributions by the relative frequencies of the performed experiment. However, there is often no 

such experiment for the parameters of a distribution, which is chosen to model a variable, which 

is to be investigated. 

 

 



Vancsó 191 

4. EXAMPLES USED IN THE COURSE  

Two problems should illustrate the approach. One is from the first semester and the other 

one is from the second semester. Of course the first has no direct connection to Bayesian 

approach but we discuss it as it prepares the Bayesian way of thinking. 

Different contexts yet mathematically isomorphic situations 

The following three paradoxes are analyzed (see Appendix A for details):  

• Prisoner dilemma (Gardner 1959) 

• Monty Hall dilemma (vos Savant 1990; see also Vancsó & Wickmann 1999)  

• The three discs problem (Varga 1976).  

We also expand on issues like why they seem to be so different regarding the inherent 

level of difficulty. It is important to see how the new information can influence the probability of 

an event. The point of these examples is to illustrate what a new piece of information means and 

what it does not convey. These problems serve as an excellent opportunity to analyze conditional 

probabilities and to use Bayes’ theorem; they amount to an ideal preparation for the Bayesian 

approach. We can analyze it using only objective probability and of course we can introduce 

probability also in a broader sense as well. For the key ideas and how they could be applied here, 

see Vancsó & Wickmann (1999). 

A very interesting task is to formulate the isomorphism between the problems. It means 

that we have to translate a task into the language (text) of the other task. If this translation is 

perfect than we say the two tasks are isomorphic. The isomorphism between the first and second 

problem is quite easy to see. There are some problems in connection to the third version. We 

sketch the solution in the next paragraph.  

These problems show another aspect as well.  

In teaching probability, we focus too much on symmetry: there are a lot of cases where 

everything is symmetrical and equiprobable e. g. coins, dices etc.  

This fact misleads us because there is a crucial asymmetry in these cases. In these 

problems there are three different options (initially with the same probability) and later on we get 

a piece of information which eliminates one option.  

Symmetry may be distorted by the information given. 
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The question is how the chances of the two remaining options have changed. Surprisingly, 

in all the cases the two remaining options have lost their previous symmetry and are now 

asymmetrical; they have not retained their same chance as we may think. It is crucial in 

understanding these problems that the information from the moderator or from the prison guard 

does not convey extra information about the first chosen box or for the prisoner himself who is 

asking the guard; however, it is favourable for the third box or the third prisoner who has not been 

mentioned yet. Thus, the symmetry is distorted by the information given. It is important to note 

that the isomorphism has always been found on our course by the students themselves, at least 

between the first two problems.  

Isomorphism or equivalence 

Isomorphism is a very precise mathematical concept: the sense in which two situations 

are isomorphic is heavily dependent on the characteristics, which are taken into account. From a 

mathematical standpoint it has to be clearly stated what is relevant; from the individual’s 

perspective many other characteristics can count.  

In saying that it is an easy task to establish a one-to-one relation between the first two 

situations we should also note that people would associate different values to the objects which 

are matched to each other: in the prisoner’s dilemma “to be condemned” is an adverse 

consequence, but the matched object in the Monty Hall problem is to “to win the car”, which is 

very good. Moreover, the consequences of the mathematical analysis for the situation are – 

despite an isomorphism – not the same, which may seem puzzling: 

o In the prisoner’s dilemma the probability to be condemned remains the same at 1/3 even 

if we are given information about one of the others who is released; but no decision or 

consequence arises. 

o In the Monty Hall problem, the probability of winning the car also remains the same after 

the moderator opens another door with the goat. Here, however, the consequences are that 

we are unhappy because our probability of winning is 1/3 and this is now (considerably) 

less than not winning the car. 

Connected to the Monty Hall problem is also a decision, i.e. we can change the final 

result by switching our decision, an option we do not have in the prisoner’s dilemma. The 

connected values change the judgement about the situation (desirable or not desirable) despite the 

same probability, which has not changed in the two (isomorphic) situations. The connected 
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decision (no decision in prisoner’s dilemma, a choice in Monty Hall) also changes the situation as 

a whole completely. 

Hence care must be taken in order to clarify the restrictions of such an isomorphism. It is 

important to remark that isomorphism always is relative and not absolute; isomorphic in a 

specific sense. Such a phenomenon is often the case with mathematization of situations and might 

be profitably discussed in teaching. The features of the situations involved could be value-laden 

and emotionally linked, which might cause difficulties in the educational process and might even 

hinder learners to accept the concepts discussed and thus hinder the positive effects of using 

isomorphism in teaching. However, if put openly to the fore, issues like that could open the 

discussion about the mathematization process as a whole, as such processes always have to focus 

on some specific aspects of a situation and ignore others. It is valuable to discuss such issues so 

that the idea of isomorphism can be understood by students; indeed one might actually prefer to 

call it equivalence as this concept is less strict and may account better for the different 

perceptions of the situations. 

Further insights and their mathematical modelling by isomorphism  

A sketch of an isomorphism between the second and the third problem might illustrate 

matters in more detail.  

• In both cases there are three possible outcomes: where the car is hidden among the three 

closed boxes or which disc was chosen from the three different ones. There is a 

moderator but with a different task in the two situations.  

• In the second he knows what we have to find out i.e. where the car is hidden and after our 

first choice he shows us an empty box from the remaining two (and he is able to do that 

because he really knows where the car is). Thereafter we have to decide to retain our first 

choice or to change our decision. The question is what has to be done and why.  

• In the third situation the moderator has chosen a disc and shows us the colour of one side 

of the disc and we have to bet on the colour of the other side. This excludes one disc and 

the question is: do the two remaining discs have same chances or not.  

The “translation” is the following:  

(a)  The moderator chooses one disc that corresponds to choosing one box for the present in 

the Monty Hall dilemma. Then we choose one disc (one box). The first step is just 

imaginary but without it we would not see the isomorphism.  
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(b) The moderator shows one empty box (one side of the disc). It eliminates one box (disc).  

(c) We either decide to remain at the first choice (box or disc) or change. It has to be slightly 

modified in case of the disc problem. ”Change” in this situation means if we choose the 

opposite colour as the colour of the side of the disc shown to us and “retaining the 

choice” means here if we bet on the same colour as it was shown to us.  

Understand the underlying assumptions of a model  

The chance for winning with strategy “change” is 32  and the opposite (conservative) 

strategy has only a winning probability of 31 . These calculations are valid only under certain 

assumptions but this is a longer story, see Vancsó & Wickmann (1999). Here it should only be 

noted that the current modelling of the situation comprises also that the moderator always makes 

us the offer of a choice, which is not always sensible in the second situation where the moderator 

could “tease” or “help” us also. This Monty Hall problem was analysed from a psychological 

point of view by Krauss & Wang (2003). One of their results is the following: Players, who have 

played the moderator as well, are significantly better than players who have not taken this role.  

We repeated this experiment with our students with a similar result. It means that 

changing the point of view is very important in mathematics. The favourable relation helps to 

understand such situations and to explain to other people how the paradox rises from a false 

symmetry expectation. Our students without exception understood this paradox and could to 

explain it to other students or friends or relatives at home. They remarked on the power of the 

psychological experiment. If they could not convince their “partners” then they offered a game, 

which illustrates the original question. Of course sometimes they could not convince the partner 

of “their truth”. 

Lotteries – the problem of the unknown number of balls 

There are different lotteries in European countries; the numbers of balls in the box vary 

and so does the number of balls drawn at each lottery. For example, there are three different 

lotteries only in Hungary (Vancsó 2006); two new types were introduced in the 1990’s – 

Hungarian players would know but not tourists:  

• The oldest (A) contains 90 balls in the urn from which 5 are chosen.  

• In (B), 6 balls are drawn out of 45.  

• In (C) named Scandinavian, they select 7 out of 35 balls.  



Vancsó 195 

Consider the situation of a tourist in Hungary who does not know how many balls there 

are in each lottery. His question is the following: he knows the numbers of the balls drawn in one 

week. He has to estimate the number of balls in the box from which the numbered balls are drawn. 

There are two different possibilities:  

• To derive a classical confidence interval for this number of balls from the data. We use 

the maximal number estimation in the following; there are different estimators but this 

one is unbiased and efficient for the total number of balls. Note, that the classical solution 

uses no extra information; such information could not be incorporated even if it existed. 

• To calculate first the posterior distribution of this number from the combined information 

of the known drawing and the prior distribution on this number; from this posterior 

distribution that region could be derived which is known as the Bayesian region of 

highest density (RHD are also referred to as credible intervals or credible regions in 

literature, see the glossary; for technical details see e. g. Wickmann 2006). 

Some aspects of students’ work dealing with theoretically interesting and challenging 

questions will be outlined in the following. The general application of classical and Bayesian 

methods in parallel in the project work is contained in Appendix B, or also in an EXCEL file.  

Differences between classical and Bayesian solutions 

The classical solution is unique once one has decided which statistic to use – and there 

are optimality criteria of efficiency for example to help this choice. The Bayesian method, 

however, gives different results under different circumstances, i.e. under different prior 

information on the total number of balls in the urn. For example, if there is information that there 

can not be more than one hundred balls in the urn, this information changes completely the 

situation and the results, which may be derived. As the prior distribution on the total number of 

balls, a uniform distribution may be chosen on the interval from the given maximum number of 

the drawing to the presumed maximum number of the balls.  

Of course there are other possibilities with good reasons. It may be supposed that the total 

number of all balls is a “special number” like: 80, 90, or 100. It may also be that it has a special 

character as square number like 81, 100, 121, or might consist of the same digits like 88, 99, or 

111. In that case, such numbers would have a higher probability than others. These non-uniform 

distributions as prior distribution may be used and of course would yield a different posterior 

distribution on the total number and a different Bayesian RHD interval for this total number.  
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It is of interest to compare the classical and the Bayesian solution in the case of uniform 

prior distributions up to n, where n tends to infinity. There is a purely mathematical question 

related to this as well: in what situation the following statement is true: the 0.95 confidence 

interval is numerically the same as the 0.95 Bayesian RHD interval provided we use uniform 

prior distributions for the total number.  

In the case of the oldest Hungarian lottery (A) we have had more than 2700 drawings 

since its introduction in the year 1957. We are able to control our result using the actual statistics 

of these 41 years for both methods. That means we derive a confidence interval from the data for 

all weeks and check how many times this interval contains the total number of balls, which is 90. 

For every week we also derive a Bayesian RHD interval based on a uniform prior distribution; we 

check how many times this interval contains the number 90. For the detailed results of this 

analysis see Vancsó (2004).  

Extensions and other contexts 

In the last few years we obtained more material, and introduced the different errors of 

classical inference as well. Earlier only hypothesis tests and confidence intervals were used from 

classical theory. We thought these were sufficient to understand the character of the two different 

approaches. We became more practised and used time more efficiently which led to more content.  

The example about lotteries is just one out of many contexts. Other topics covered in this 

second semester are exit polls, the fair coin or dice problem, or testing of experts. Recently, 

betting in connection to sports events has become more popular. This betting situation is 

paradigmatic for the Bayesian approach; it was extensively used and analyzed by de Finetti who 

is one of the prime Bayesians. Gáspár (2006) wrote a diploma thesis on the betting context; he is 

now an employee of a big online betting company in Hungary. In the thesis, he uses a special 

technique that is typical in this betting situation exploiting prior information to estimate the initial 

odds for betting (later the odds are usually adapted to the stakes put by bettors).  

 

 

5. EVALUATION OF THE PROJECT 

There are different methods to evaluate a curricular project like ours. One important 

criterion is the soundness of the approach philosophically and mathematically. We have 

elaborated such issues in the paper. Another possibility would be the success of the students; a 
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further criterion is how teaching is accepted and how students feel that they understand the 

concepts after the course.  

Success of students 

The marks in examination papers have improved over the years as compared to earlier 

times when the students primarily had a mathematically oriented course in probability. Also, the 

acceptance by students increased as measured by numbers of students who chose the seminar, 

which was not compulsory for them. 

There have been many diploma theses emerging from these seminars; some students also 

got well-paid positions outside the school-system. This has to be compared to the fact that 

probability earlier has been a subject of minor importance and has been avoided by its poor 

reputation to be very demanding. 

One former student, who has participated in the 2004/05 seminars, is going to write a 

doctorial thesis with the title “Modelling in statistics”. In his teaching at secondary school, he 

experimented with ideas and methods emerging from the “parallel” seminar. His students reached 

about 20% higher scores at the final examination in statistics and probability than the average of 

secondary schools in Budapest.  

This result supports our research hypothesis that a deeper insight in theories improves 

later expertise in teaching. In what follows, some evidence of the outcome of the approach is 

given by students’ opinions and concrete materials made by them during the course.  

Self-reports of students 

All in all, the students always found this way of teaching useful and in the end of the 

course, they wrote interesting essay questions and their solutions. They found the idea of 

involving subjectivity into mathematics very surprising. One of them wrote an essay using a 

famous book of Pólya about heuristics. Pólya (1954) introduced subjective probability as a 

measure of our conviction, and dealt with mathematical problems, which are not easy to prove but 

some correct consequences of the theorem are known. He shows how these facts may increase the 

probability of the truth of the theorem in question. He does not explicitly denote his arguments by 

the word favourable but uses the favourable relation over 60 pages of the book to solve and 

describe problems.  
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The students find this way of learning very useful and comment that it enables them to 

explore ideas more deeply, which they think is important for their later role as teachers. These 

statements are well documented by students’ essays written after the courses in the last few years. 

Some extracts of their reactions are cited below. These opinions demonstrate a definite advantage 

of the parallel approach for their conceptual progress.  

“I never thought that the degree of my certainty can be handled mathematically and 

be measured by probabilities. It was very impressive for me and I now understand 

better what happens when mathematicians work on a new theorem.” (Student 2003) 

“I constructed three boxes from cardboard and always hide a little plastic cat from 

view in one of the boxes. With this apparatus, I played Monty Hall with my friends. 

After many experiments, they understood what really is going on; they accepted the 

mathematically optimal strategy more easily when they played the moderator 

themselves.” (Student 2006)  

The effect of changing the role on the decision chosen and on the acceptance of 

theoretical results is confirmed by Wang & Kraus (2003). In Bristol, during an exchange 

programme, students from Budapest showed the Monty Hall problem; the above mentioned 

construction was standard part of probabilistic heuristics. 

“I saw why for the first time. For some time, I felt cross with the Simpson paradox. 

Now, with the new concepts, it is a very good feeling. I like such “aha” experience 

where I understand my own brain better. I thought stochastics to be a very strange 

field of mathematics; or, better to say not really a part of mathematics. This course 

showed me how the unexpected results in statistics or probability come into being 

and get a better insight into probabilistic thinking.” (Student in 2007)  

“I understood at least that it is the very strongly imprinted causal thinking (cause and 

effect) and its asymmetry that makes the favourable relation so paradoxical; 

situations where only stochastic connections exist are symmetrical, which breaks 

causal rules.” (Student in 2007)  

These remarks express very clearly one main problem in stochastics, namely that it 

supposes a type of logic, which is different from the classical one. Understanding this fact, 

students can get more familiar in different modern topics of physics or biology e. g. quantum 

physics or genetics. There are remarks from students who studied physics as well. They show that 

their thinking is more flexible as they do not find such phenomena to be thus mystical as they 

have seen such paradoxical situations previously. These efforts do not belong to the main stream 
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of our course therefore such documents were only “collected” from personal discussions with the 

students and not by a specially designed questionnaire. 

The interpretation of confidence intervals 

Confidence intervals are open to indirect interpretations only. We all know about the 

difficulties of interpreting results gained by this method properly – not least from the examination 

papers. Some more citations of students illustrate our thesis about the positive effects of parallel 

teaching of the two statistical concepts – here with respect to confidence intervals:  

“I understood the confidence interval only after I had become more familiar with the 

Bayesian region of highest density.” (Student in 2004)  

“I always interpreted the classical result wrongly because I thought the confidence 

interval contained the estimated parameter with the given probability, which is 

usually selected as a high figure. I have understood at last what it really means.” 

(Student in 2005)  

This misunderstanding is common and can also be remedied by other (more classical) 

ways. The main point is to understand the confidence interval as a random variable and not the 

parameter (at least in the classical approach). From the applications, there is an urgent need in 

such an interpretation of an interval containing the unknown parameter with a pre-assigned 

probability. However, the classical approach does not provide it – contrary to what it “promises”. 

This misleading promise prompts so many students to interpret the procedure of confidence 

intervals wrongly (see e. g., Gigerenzer 1993). 

“I really like the Bayesian method because I saw for the first time why people have 

different opinions in many cases. Because different people may have different prior 

distributions.” (Student in 2007).  

About the lottery problem, two students have initiated an interesting project. One of them 

analyzed the oldest lottery (5 chosen numbered balls) and found an interesting connection. Her 

result is shown in Table 1. 

M denotes that number, which according to the prior information is the largest possible 

number for total of balls; and the figures in the table are the upper bound of the 0.95 Bayesian 

RHD intervals; the upper bound of the classical 0.95 confidence interval is shown in the first row. 

It demonstrates that classical and Bayesian intervals are numerically not equal in the case of “zero 

information” (uniform prior distribution). Note that if the maximal number of balls according to 
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the prior information is less than 100, Bayesian intervals are more precise than classical intervals.  

    555 =x 615 =x 795 =x 855 =xMaximum number of the week 

Upper bound of confidence interval 99 110 143 155 
100 90 93 98 99 

Upper bound of 150 106 115 133 137 Bayesian RHD
250 112 124 158 168 

Prior maximal number 
of total balls M 1.000 113 126 164 176 

∞→  115 128 166 179 

Table 1. Comparison of classical and Bayesian (R H D) intervals for the total number of balls. 

It is an interesting question whether there is such a number M for which confidence and 

Bayesian intervals are numerically equal. As mentioned earlier, there are different prior 

distributions for example assuming higher probabilities for special numbers. The uniform 

distribution is the best way to express the status of having no information and we see from Table 

1 that the classical and Bayesian solution could be quite similar if the prior information reduces 

the total number by say 120, which is quite reasonable in view of our knowledge about lotteries.  

Another student experimented with lottery B of 6 from 45. The results of the weeks 

inspected by her were 34, 35, 42 and 45 with respect to the maximum of the drawn numbers. She 

compares the classical 0.95 confidence interval to the Bayesian interval based on a prior uniform 

distribution up to M and investigates the development of the Bayesian interval when M tends to 

infinity If M is less than 100 and a uniform prior distribution is used, then the Bayesian RHD 

produces a smaller interval than the classical confidence interval.  

Maximum number Bayesian RHD  ∞→MConfidence interval 

34 [34, 55] [34, 59] 
35 [35, 56] [35, 61] 
42 [42, 68] [42, 73] 
45 [45, 73] [45, 79] 

Table 2. Classical and Bayesian intervals for the 6 from 45 lottery – M = prior maximal number of total balls. 

It is interesting to compare the results of both methods to each other as was done in the 

two students’ projects. There is enough data from actual drawings of the lotteries to check the 

success of the confidence interval method. The Bayesian RHD interval can be checked as well 

from case to case depending on the chosen prior distribution. According to the expressed 

didactical thesis about the positive impact of diversity, it may be postulated that: if somebody 

knows different constructions for solving a problem, he or she might understand each of the 

methods and the problem and the solutions better.  
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This semester, Hana Burján (a student who had studied engineering and economics too 

and now she would like to be a mathematics teacher) held a presentation about an estimation 

problem solving it by both methods and could present both interpretations perfectly. She was very 

convincing and the rest of the students participating at the seminar eagerly followed and 

understood her. It is pity that this presentation was not video-taped for posterity.  

In 2004, we posed a test on the Internet about the interpretation of confidence intervals. 

We asked only such people who had already studied at least 3 years of mathematics. There are 

only two correct answers out of 89. In contrast to that bad performance, the students of the last 

two seminars reached very good results with only two false answers out of 31. The question was 

posed in Germany as well (for the results, see Gigerenzer & Kraus 2001, p. 51). 

 

 

6. CONCLUSIONS AND FUTURE PLANS 

We tried to carry out such didactical principles which are general enough to serve as a 

basis for teaching inferential statistics. One of the important ideas is to compare and contrast new 

concepts with each other right from the beginning. Confidence intervals may be better understood 

if the Bayesian interval of highest density is also introduced and contrasted to it. Our experience 

supports this principle which is substantiated by students’ work and interviews as well. Students 

found it important to understand the notion of conditional probability and manipulate it.  

Bayes’ theorem plays a minor role in the classical approach where it is like a foreign 

particle which often causes confusion as it invokes other perceptions which do not fit to the 

chosen framework. However, this theorem plays a central role in Bayesian inference where it is 

conceptually well integrated. It deals with the question how our “knowledge” develops about 

uncertain things if we get new information. That has been frequently a cornerstone of students’ 

opinion. An important note is that the historical personage of Reverend Thomas Bayes himself 

was not a “Bayesian”, he did not think about subjective probability.  

• Success and feedback from students show that this parallel approach can be a good basis 

for teacher education at university to study inferential statistics. The students’ knowledge 

became more reflective and conscious about the problematic issues in statistical inference. 

The different interpretations of probability and their foundation enhance the limitations 

and true interpretations of classical inferential procedures.  
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• Theoretical analysis and evaluation of qualitative results of the pilot projects indicate the 

direction of further refinements of the approach.  

• Feedback from students, who have become teachers at school meanwhile, shows that 

their belief about mathematics and their teaching styles are different from their colleagues. 

While their colleagues struggle with the subject, our students who are now teachers have 

success in teaching probability and statistics. This is supported by qualitative personal 

interviews; a questionnaire is planned to measure this effect quantitatively. 

• The next step could be a treatment control group comparison to provide quantitative 

evidence about the effectiveness of this teaching method. The growing popularity of the 

“parallel” seminars will make installing a control group more realistic in the near future. 

• A book on the detailed ideas and results of our piloting courses is in preparation.  

There are some final remarks. This author is not an expert in Bayesian statistics. The 

conception of the “parallel” courses for teacher students was discussed focusing on their later 

work. In the last two decades there have been many research studies about teacher beliefs about 

mathematics. For this topic, too, the experiments presented are very useful: The myth about 

mathematics as absolute knowledge has been challenged for the students participating in these 

courses. Our students understood mathematics as a result of our activities and thinking briefly 

“made by us”. (cf. Freudenthal 1973, p. 213, or Lakatos 1976, introduction)  

From this point of view, mathematics has been based on historical processes as well. 

While our notions are suitable to express our experience, they are not absolute. For the same 

situations there are different notions, such as different concepts of continuity or integrals in 

calculus. If there are two different approaches for solving a problem, then we can no longer claim 

our answer to be absolute. Such relativity of truth is at the core of modern mathematics but there 

are still people including mathematicians who reject these statements (the so-called Platonists).  

These courses gave rich opportunities to reflect questions of the philosophy of 

mathematics, which is very important taking into account that a high percentage of our students 

will become mathematics teachers and influence the next generations of pupils at school. 

Advanced mathematics usually has a high priority and prestige for teacher students at our 

university. Statistics and probability traditionally is less popular but this “parallel” course has 

changed the situation a little bit in Budapest.  
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APPENDIX A: 

SOME PROBABILITY PARADOXA 

"The prisoner's dilemma" 

This problem was originally formulated by Gardner (1959), and later taken up by several 

authors, e. g. Mosteller (1987). It was fiercely and widely discussed in the literature. For details, 

see following description according to Weisstein (n. d.)  

“In this problem, three prisoners A, B, and C with apparently equally good records have 

applied for parole, and the parole board has decided to release two of them, but not all three. A 

warder knows, which two are to be released, and one of the prisoners (A) asks the warder for the 

name of the one prisoner other than himself who is to be released. While his chances of being 

released before asking are 2/3, he thinks his chances after asking and being told "B will be 

released" are reduced to 1/2, since now either A and B or B and C are to be released. However, he 

is mistaken since his chances remain 2/3.” 

"Monty Hall problem"  

This problem became famous as it was part of a popular TV show; the discussion to 

follow the solution by vos Savant (1990) was signified by remarkable wrong conceptions of the 

presented situation and a complete misunderstanding of the presented correct solution. It is 

amazing that a problem as simple as this one was so much disputed among mathematicians and 

statisticians, not to speak of other well-educated people or novices to the subject. More details 

may be found from Monty Hall (Wikipedia n. d.). The following description is according to 

Weisstein (n. d.): 

“This problem is named for its similarity to the Let's Make a Deal television game show 

hosted by Monty Hall. The problem is stated as follows: Assume that a room is equipped with 

three doors. Behind two are goats, and behind the third is a shiny new car. You are asked to pick a 

door, and will win whatever is behind it. Let's say you pick door 1. Before the door is opened, 

however, someone who knows what is behind the doors (Monty Hall) opens one of the other two 

doors, revealing a goat, and asks you if you wish to change your selection to the third door (i.e., 

the door which neither you picked nor he opened). The Monty Hall problem is deciding what to 

do: change your choice or retain it.”  

http://mathworld.wolfram.com/PrisonersDilemma.html
http://en.wikipedia.org/wiki/Monty_Hall
http://mathworld.wolfram.com/PrisonersDilemma.html
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"Three discs problem" 

Varga (1976) proposed a nice variant of the elder problem of Bertrand’s drawers. 

Interesting details about the history, or the solution, may be found in Bertrand's box paradox (n. 

d.), Darling, D. (n. d.), or from Everything2 (n. d.). The advantage of Varga’s discs lies in the 

circumstance that it may easily be performed as an experiment in class. There are three discs 

marked as in Figure 1. 

  

   

Face Reverse  Face Reverse  Face Reverse 

Figure 2. Varga’s discs. 

One of these discs is held up to the children; only one side is shown to them and they are 

asked to guess what is on the reverse ,spot or blank' (We used two different colours in our 

experiments). After a series of random guessing and getting the other side of the disc shown to 

see whether they had made the right guess, the children were asked to devise and write down a 

strategy for guessing, which they would apply each time subsequently.  

For illustrative purpose, one class experiment with this game is reported: 

A teacher played this game with 10–11 years old children. He summarised his 

observations briefly. “Some tried to repeat the last result in their prediction each 

time, others used blank and spot alternately for predicting the next result. None 

chose the best strategy: whatever is on the face is most likely to be also on the on 

the reverse side). He then let one child use this strategy and the results showed 

that he consistently scored best over a range of fifty trials. The children began to 

think and to suggest reasons as to why this might be. Their thinking was 

intuitively supported; no one came up with a numerical solution but their answers 

reflect that they had started to grasp some of the relevant ideas inherent in 

probability.” 

http://en.wikipedia.org/wiki/Bertrand%27s_box_paradox
http://www.daviddarling.info/encyclopedia/P/paradoxes.html
http://everything2.com/title/Bertrand%2527s%2520Box%2520Paradox
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APPENDIX B: 

EXAMPLES OF STUDENTS’ WORK – IN EXCEL 

 To the annex  

 To the EXCEL file  

The following examples illustrate students’ work. As is typical for the application of Bayesian 

methods, we had to use software; VisualBayes from Wickmann (2006), or EXCEL. In what 

follows, we present some graphs together with the problems and methods we used in the projects. 

Of course, for the paper, the layout has been enhanced. 

The problem and various classical and Bayesian methods to deal with it 

In a lottery n out of N, the number N of balls is assumed to be unknown. We draw 

n = 6 balls without replacement from the “urn”, the Lotto numbers; the numbers 

ordered are:   

  621 .. xxx <<<  

The problem is how to extract information on the unknown number N of balls 

from the numbers drawn? 
 

 

• Classical methods for finding the maximal number of balls  

Estimation of the number of balls 

Confidence interval for the number of balls 

• Bayesian methods for finding the maximal number of balls  

Updating of prior distribution on the maximal number by the result of one week  

Cumulative – week by week – updating of uniform prior 

The reader will find more details in the annex or in the EXCEL file where it is also 

possible to simulate the results of the week and see the influence on the Bayesian result. Here, we 

will show only a few graphs to illustrate the difference in results between the classical and the 

Bayesian approach. 

Classical estimation of the number N of balls 

There are several estimators of the unknown number, all with different properties. We 

refer only to a few: 
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 Median Mean MLE Extreme gaps  Mean gap 

6
6maxmax −

+) ,.. ,( med 2 61 xx⋅  1-) ,.. ,(mean  2 61 xx⋅ ),..,max( 61 xx   max + min – 1 

Table 3. Various estimators for the number N of balls. 

The data of the lottery since its start are analyzed to show the behaviour of these 

estimators. For classical estimators, two properties are most relevant: Whether the estimator is 

unbiased (or correctly centred), and whether it has a small variance, which means that in 

repetitions of the situation the new estimate would not differ too much from the first estimate.  

From the graphs one may see the following. The median estimator has a great variance 

but is centred correctly; the extreme gaps estimator is better than the median estimator but with 

respect to the maximum likelihood estimator, it is worse. However, the MLE estimator on the 

other hand is not unbiased (it is only asymptotically unbiased, which means that the systematic 

error converges to 0 as the sample size increases to infinity). 

MLE estimator of N

0,00
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0,10

0,15

0 20 40 60 80 10

Median estimator of N

0,00

0,05

0,10

0 20 40 60 80 100 0

Extreme gaps estimator of N

0,00

0,05

0,10

0 20 40 60 80 100

Mean gap estimator of N
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0,05

0,10

0,15

0 20 40 60 80 100

Figure 3. Repeated estimations of the unknown number of balls by various estimators. 
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Classical confidence intervals 

This method yields intervals, which cover the unknown parameter (here the number N of 

balls) with a pre-assigned probability – supposed that it is applied in repeated cases under the 

same conditions. The graph shows the intervals for N week by week, calculated from the week’s 

drawn lotto numbers. The global coverage rate is 95.7%. A disadvantage with classical 

confidence intervals is that it is not easy to integrate the data cumulatively from the past to give 

one summary confidence interval for N. 

Weekly confidence intervals for the number N of balls
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Figure 4. Classical confidence intervals on a weekly basis – the line in the middle represents the “true” value. 

 

Bayesian methods for finding the maximal number of balls 

For a Bayesian solution, it is necessary to model the prior knowledge by a distribution. 

Here, "complete" ignorance of this number N will be modelled by a uniform distribution on the 

interval [31, 80]. This prior is updated by the results of one week to a new posterior distribution 

on N reflecting the information of the data of one week. This new status of knowledge on the 

maximal numbers of balls is calculated and graphically presented. 
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Figure 5a. The posterior distribution of the number balls is dependent on the week's results. 
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Figure 5a. Another representation of the posterior distribution of the number balls. 
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Within the Bayesian framework, the posterior distribution of the number of balls after one 

week may serve as prior distribution for the next week. Thus, a continuous process of updating 

may be applied. The following graphs (Figures 6a and b) show the resulting learning process: 

after 9 weeks, the initial ignorance on the interval [31, 80] – modelled as uniform distribution – 

has been changed to a distribution, which is reduced to the values between 45 and 48, all other 

values have already a negligible probability at that stage. After 30 weeks, this posterior 

distribution expresses a status of knowledge that 45 has a high probability, while the slight “risk” 

still to have 46 or more balls is virtually negligible. 
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Fig. 6 a. After 9 weeks,  

only 45–48 bear a non-negligible probability. 

Figure 6b. After 30 weeks,  

only 45 is relevant; there is a small probability for 46. 

 

The graphs in Figure 6a and b clearly show the convergence of the posterior probability 

distribution with time. In fact, the true number N equals 45; we deal here with the 6 out of 45 

Hungarian lotto. The repeated updating accumulates all information from the past and yields a 

present status of information about the unknown parameter.  
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Ordered numbers of successive draws 

 

Nr x1 x2 x3 x4 x x5 6

1 6 15 20 24 38 40 

2 9 14 23 32 40 43 

3 1 7 14 43 44 45 

4 6 9 11 14 18 30 

5 12 13 19 30 34 45 

6 16 17 19 20 34 35 

7 4 23 26 35 39 40 

8 11 32 40 41 42 45 

9 1 5 11 25 40 41 

10 3 27 33 34 35 39 

11 7 12 20 32 38 43 

12 5 21 29 33 39 43 

887 9 10 11 14 25 28 

888 3 6 10 17 38 43 

889 6 9 10 24 37 38 

890 3 16 24 26 36 40 

Table 4. Data of the Hungarian six-numbers lotto since its start 

 

The whole data on the lottery since its beginning is contained in the EXCEL file where 

the reader may find also data on the 5 out of 90 lotto in Hungary. Furthermore, the file contains a 

detailed analysis of the problem by classical and Bayesian methods done as part of the project by 

the students. Here, we focused on a presentation of the methods used to solve the problem. 

 

 

 To the annex  

 To the EXCEL file  
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