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 By integrating computational thinking (CT) based mathematical reasoning with early childhood education 

through programming a dinosaur game in Scratch, this study aims to enhance the pedagogical skills of pre-service 

teachers by using learning objects (LOs). Also, explores frameworks for LOs construction to align with pedagogical 

goals, emphasizing the importance of students’ mathematical outcomes, understanding of CT concepts, and the 

process used by teacher to help pupils solve the problem. This research utilizes an assessment grid tool for 

evaluating digital learning resources, with findings indicating the LOs high-quality as assessed by 57 pre-service 

teachers. Our study indicate how it is possible to create and use LOs for the pedagogical development of teachers, 

focusing on teaching methodologies and the application of mathematical knowledge in CT activities. 

Keywords: learning object, computational thinking, pre-service teacher training, mathematics instruction, 

primary education, Scratch 
 

INTRODUCTION 

Academic researchers have been studying how it is possible to include computational thinking (CT) skills and concepts in 

mathematics learning (Benton et al., 2016; Gleasman & Kim, 2020; Silva et al., 2020; Ye et al., 2023). In this sense, it is important to 

investigate how students learn when facing CT-based mathematics instruction and how pre-service teachers can teach this 

subject (Dobgenski et al., 2022; Gleasman & Kim, 2020). This understanding is an important matter to Brazilian pre-service teachers 

of primary education because CT was introduced with mathematics in the nacional common core curriculum (NCCC) in 2018. The 

NCCC is a federal document that guides school curricula and provides for the development of CT through mathematics teaching 

(Ministério da Educação [Ministry of Education], 2018). It means that the board of education had to prepare its elementary teachers 

to teach math and develop CT skills and abilities in their students. However, few attempts have been made to introduce CT to 

teacher in the education in Brazil and less for pre-service teachers who will act in the first years of education.  

Trying to fill this gap, our main doctoral research is focused on analyzing the reflections resulting from pre-service teachers 

during a CT skills training process. Therefore, to support teaching practices used during the teachers’ training process, we decided 

to investigate how to teach pupils about the elementary mathematics content mentioned in the NCCC and integrate it with CT. 

We chose to introduce the concept of geometric orientation to children which is presented in a spiral learning pattern from 1st to 

5th grade of primary education in Brazil. In this investigation, we involved two students, one from the fourth and another from the 

fifth grade, in a practical programming situation with Scratch aimed at developing the ideas of geometric orientation.  

The literature review shows there is no consensus definition of CT, making it difficult to discuss how CT can be developed, 

measured, and assessed (Raabe et al., 2015; Rachmatullah et al., 2020; Valente, 2016). Thus, it is hard to find a methodology 

convergence in CT research that indicates what is important to its development. But the literature common sense observes the 

programming as a frequent tool used to develop CT in the students and Scratch is pointed as a way of coding (Benton et al., 2016; 

Gleasman & Kim, 2020; Hsu et al., 2018; Rachmatullah et al., 2020). For this reason, we proposed under the constructionism 

perspective (Papert, 1986) that these students built a game–which presupposes the creation of algorithms based on the notion of 

Cartesian plane–developing it in Scratch. 
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It is in this investigation scenario that the student’s learning process was analyzed in terms of the relevant strategies that were 

used by the teacher, who, through a constructionism approach, assisted the students to develop CT and to use their mathematical 

knowledge during a programming activity in Scratch.  

Therefore, the investigation described in this article focused on creating learning objects (LOs) derived from the pupils’ 

experience while exploring mathematical ideas when developing their CT skills during the activity of programming a dinosaur 

game with Scratch–to use these LO in a teachers’ training process. In this sense, we sought some frameworks to guide the LO 

construction aiming to align with our pedagogical expectations about the understanding of how CT-based mathematical activities 

can be positively integrated into early childhood education. We argue that such LO should be  

(1) based on the students’ mathematical learning outcomes,  

(2) their understanding of CT skills and concepts, and  

(3) the process used by the teacher to help pupils solve the problem.  

These three conceptual topics was highlighted and evidenced by Ye et al. (2023), Selby and Woollard (2013) combined with 

Rachmatullah et al. (2020), and by Silva et al. (2020) frameworks, respectively.  

This paper provides a foundational theoretical review about LO, shows the development and validation of the LO as a tool to 

teach CT-based mathematical instructions to pre-service teachers. 

THEORETICAL FRAMEWORK  

To establish our theoretical framework initially we investigate concepts such as LOs, constructionism, problem-solving and 

frameworks. This exploration was driven by our aim to establish meaningful connections among these elements. 

Learning Objects 

LOs refer to discrete, self-contained digital resources that are designed to facilitate learning and instruction on a specific topic. 

Wiley (2002, p. 4) explains that “learning objects are generally understood to be digital entities deliverable over the Internet” but 

defines them as “any digital resource that can be reused to support learning” (p. 6) as those that can directly interfere with learning 

as “digital images or photos, live data feeds (like stock tickers), live or prerecorded video or audio snippets, small bits of text, 

animations, and smaller Web-delivered applications” (p. 6). These resources are intended to be easily reusable, and adaptable for 

various educational contexts, making them valuable tools for educators to enhance teaching and learning experiences. LOs 

typically encapsulate a single learning objective or concept, which can be a small piece of knowledge, a skill, or a complete 

learning activity.  

The concept of LOs in education shares some similarities with the object-oriented paradigm in computer science (Wiley, 2002). 

Understanding the relationship between LOs and the object-oriented paradigm in computer science provides valuable insights 

into how the principles of object-oriented programming align with the design and use of LOs. The object-oriented paradigm, 

commonly used in software development, shares certain conceptual similarities with creating and utilizing LOs. Both concepts 

revolve around the idea of abstraction, encapsulation, modularity, and reusability, although they are applied in different contexts. 

Abstraction  

Object-oriented programming relies on abstraction to simplify complex systems by focusing on relevant details while hiding 

unnecessary complexities. This enhances the understandability and maintainability of the codebase (Deitel & Deitel, 2005; 

Sebesta, 2002). In education, LOs abstract specific educational content or activities. They provide a focused learning experience 

on a particular topic while abstracting the underlying complexities of instructional design. This enables educators to present 

content in a clear and structured manner, similar to how object-oriented programming abstracts complex operations into 

manageable objects. 

Encapsulation  

In the object-oriented paradigm of computer science, encapsulation refers to the grouping of data and the methods (functions) 

that operate on that data into a single unit called an “object”. This encapsulation ensures that the internal workings of an object 

are hidden from the outside world, promoting data integrity and abstraction (Deitel & Deitel, 2005; Sebesta, 2002). Similarly, in the 

context of LOs, encapsulation involves packaging a specific piece of educational content, such as a learning module, it could be 

an interactive activity or assessment for example, into a self-contained unit. This encapsulation ensures that the educational 

content is distinct, well-defined, and can be used independently or combined with other LOs.  

Modularity  

LOs are designed to be modular, meaning they can stand alone as independent units of learning. Object-oriented 

programming emphasizes breaking down complex systems into smaller, manageable modules (objects). These modules can be 

developed and tested independently before being integrated into the larger system. This approach enhances code organization, 

maintenance, and reusability (Deitel & Deitel, 2005; Sebesta, 2002). In education, LOs exhibit modularity by breaking down 

complex topics or learning goals into discrete units. Each LO focuses on a single learning objective or concept, making it easier to 

organize, reuse, and adapt instructional content. As occurs with object-oriented modules that can be reused in different software 

projects, the same goes with LOs that can also be reused across various educational contexts, because their modularity allows 
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educators to mix and match LOs to create customized learning experiences that align with their teaching goals and the needs of 

their learners. 

Reusability  

Object-oriented programming encourages the creation of reusable code through the development of classes and objects. 

These reusable components reduce redundancy, save development time, and enhance the consistency and reliability of software 

systems (Deitel & Deitel, 2005; Sebesta, 2002). Similarly, LOs are designed with reusability in mind. They can be reused across 

different courses, modules, or educational contexts, reducing the effort required to create new instructional materials. Just as a 

class in object-oriented programming can be instantiated multiple times, a LO can be reused across various educational scenarios. 

Constructionism 

Constructionism, as a learning theory, emphasizes the importance of active problem-solving and hands-on learning 

experiences (Papert, 1986). At its core, constructionism highlights the idea that individuals learn best when they are actively 

engaged in the process of constructing knowledge rather than passively receiving it. Papert (1986) believed that children should 

have access to concrete materials and tools that allow them to explore mathematical concepts through direct manipulation. This 

can include physical objects like blocks, measuring tools, and computers. In this sense, Papert (1986) was against computer-aided-

instruction because he did not believe in a computer teaching children, but he intended the children to program the computer, 

learning how to “talk” with the computer (p. 17-18). Papert (1986) also said that “learning to communicate with a computer can 

change the way other learning happens [...] and with computers with which children like to communicate when this 

communication occurs, children learn mathematics as a living language” (Papert, 1986, p. 18), we can say that computers provide 

a dynamic learning environment in which children can experiment, make mistakes, and iterate. This reflects the idea of “learning 

by doing” in which children actively build their understanding of mathematics through practical experiences, making learning 

mathematics more meaningful.  

He was a pioneer in the use of computers for educational purposes and developed the Logo programming language, which 

allowed children to create and manipulate geometric shapes using code. This hands-on experience with coding and geometry 

helped them understand mathematical concepts in a practical way. But Jonassen (2007, p. 176) pointed two significant limitations 

of Logo-based microworlds presented very constrained and circumscribed problems that engaged a limited set of skills and 

although Logo is syntactically simply language, it still requires several months of practice to develop skills sufficient for easily 

creating microworlds. However, Jonassen (2007) agreed with the idea of the microworld by considering that spaces of exploration 

and experimentation as problems are indeed a powerful idea (p. 176). Today, similar educational tools and software can be used 

to integrate technology into mathematics education such as Scratch, which overcomes the limitations of Logo’s microworlds 

discussed by Jonassen (2007). 

Silva et al. (2020, p. 8) state the “constructionism, CT, and problem-solving are closely related” and highlight that 

“constructionism, in general, is a learning theory involving problem-solving that usually offers ways to explore computer 

programming in mathematics learning”. Computer programming becomes a helpful tool for exploring mathematical ideas, 

enabling students to visualize and manipulate mathematical models in ways that traditional teaching methods may not offer.  

Problem-Solving 

Polya (1945, p. 221) suggested that “solving problems is a fundamental human activity. In fact, the greater part of our conscious 

thinking is concerned with problems” he added that “to solve a problem is, essentially, to find the connection between the data 

and the unknown” (Polya, 1945, p. 182) and that “we need a certain amount of previously acquired knowledge” (Polya, 1945, p. 

150) to solve a problem. Solving problems is a useful and necessary challenge for learning math well because it’s essential to 

completely understand its context, constraints, and underlying factors (Säfström et al., 2023). For us, the importance of problem-

solving goes beyond finding an adequate or optimal solution to the problem addressed but is focused on the heuristics or process 

that involves finding the solution.  

When we think about math problems, we may see it as a puzzle where the student does not have a ready-made solution. They 

must figure out the important parts using their own math thinking, that is, they need to use their previous knowledge as said Polya 

(1945). This decomposition can be understood both for the problem, breaking it down into smaller problems, and for the process 

of finding the solution to the problem. By dividing this process into phases, it is possible to check which aspects are most confusing 

or difficult for students when solving a problem. Säfström et al. (2023) developed a diagnostic framework for the difficulties 

primary and secondary students faced when constructed their own solutions to mathematical problems, focused on diagnosing 

of students’ specific reasoning difficulties. These authors where based on Schoenfeld’s (1985) six-phase model to solve a problem, 

which one was inspired by four-phase model of Polya (1945), as shown in Figure 1. 

Schoenfeld’s (1985) model expands on Polya’s (1945) process by emphasizing analysis and exploration of the problem before 

planning the solution. It also places importance on metacognition, encouraging students to reflect on their own thinking during 

the problem-solving process (Schoenfeld, 1985). This involves breaking down the problem into smaller components or sub-

problems, but to do this is necessary to understand the problem deeply. The problem-solver can generate multiple solutions and 

evaluate and compare them to determine which one is the most effective, efficient, and suitable for the given situation. After 

implementing the solution, it’s essential to assess whether it effectively solves the problem. If not, adjustments and refinements 

may be necessary. Problem-solving is often an iterative process. If the initial solution does not work or if new challenges arise, the 

problem-solver may need to revisit earlier steps to find a better solution. This is related to with we discussed about 

constructionism and reinforced what Silva et al. (2020) said about constructionism, CT, and problem-solving share a close 

relationship. In the realm of CT and mathematics instruction, it plays a central role in developing critical thinking skills. Valente 
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(2003) highlighted that utilizing the learner’s understanding of concepts related to the problem, including those pertaining to the 

computer, software, and the effective application of strategies, help them to articulate and outline the steps involved in solving 

the problem, which are considered as a set of rules, and they are called routine tasks in software development. Math problems 

and routine tasks make students think in different ways, helping them learn at different levels (Säfström et al., 2023). Papert (1986) 

also reinforces this relationship when suggested that Logo and the turtle geometry provides excellent opportunities to practice 

the subdivision of the difficulties–when explain why this tool is useful to apply the Polya’s (1945) solving problem method because 

when facing a problem, we should mentally review a set of heuristic questions, asking: can this problem be decomposed into 

simpler questions? Is there any way to associate it with another problem whose solution is already known to me? (Papert, 1986, 

p. 88). Furthermore, Papert (1986) states that the Turtle’s geometry introduces a new dimension to Polya’s (1945) concept: “To 

solve a problem, look for something similar that you already know and understand.” (Papert, 1986, p. 88). Even though the idea is 

abstract, the Turtle’s geometry transforms it into a concrete and methodical principle. 

This is the strength of coding solutions at the computer using tools such as Scratch, for example. The students may see what 

is happening, identify the errors and trying new ways to find the solution. But it could not be effective if they just used trial and 

error, what suggest the importance of being well guided by a teacher to find their own answers to the heuristic questions to solve 

a problem as Polya (1945) and Schoenfeld (1985) showed. 

Pedagogical Validation Frameworks  

To support the creation of LOs, we use three distinct frameworks: one to validate students’ mathematical knowledge (acquired 

or used); other to validate the pedagogical method used by the teacher and another, together with the definition of CT, to validate 

the skills and concepts of CT used by students.  

Computational thinking definition, concepts, and skills 

In this research we consider CT definition by Selby and Woollard (2013, p. 5) which “is a focused approach to problem-solving, 

incorporating thought processes that utilize abstraction, decomposition, algorithmic design, evaluation, and generalizations”. 

This approach combines the four CT pillars: abstraction, algorithms, decomposition, and pattern recognition (BBC Learning, n. d.; 

Raabe et al., 2020, p. 19), which, according to BBC Learning (n. d.), help solve complex problems. 

Rachmatullah et al. (2020) developed a concept inventories (CI) using a block-based programming language with 24 multiple-

choices items guided by knowledge, skills and abilities focused on programming/CT concepts as variables, loops, conditionals, 

and algorithms. In our research context we consider these CT concepts used by Rachmatullah et al. (2020), since we are interested 

in use this CI to assess the CT knowledge of the pre-service teachers before and after the training, in which we use the LO described 

in this paper. 

Mathematical knowledge 

To identify how pupils mobilized their elementary mathematical knowledge and how they developed new ones while 

programing their own game’s code, we used the framework by Ye et al. (2023). Ye et al. (2023) conducted a systematic review on 

the integration of CT in K-12 mathematics education with a focus on CT-based mathematics instruction and students learning 

under such instruction. They used Web of Science as a database searching studies published from 2006 to 2021. They selected 24 

articles to provide illustrations of CT-based mathematics instruction and related student learning, analyzed according to 

education levels and contexts, programming tools, learning outcomes in CT and mathematics, and the mutual relationship 

between CT and mathematics learning. They found CT-based mathematics learning entails an interactive and cyclical process of 

reasoning mathematically and reasoning computationally, which can occur when:  

(1) applying mathematics to construct CT artefacts,  

(2) applying mathematics to anticipate and interpret CT outputs, and  

(3) generating new mathematical knowledge in parallel with the development of CT.  

 

Figure 1. Polya’s (a945) and Schoenfeld’s (1985) phases models to problem-solving 
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Pedagogical method 

Silva et al. (2020) investigated students’ CT in mathematics education analyzing teaching experiments and used a framework 

based on constructionism and problem-solving. For the constructionism approaching they considered user-computer interaction 

as description-execution-reflection-debugging-description … as a spiral actions. For the problem-solving they suggest heuristics 

components as exploring, planning, verifying, and analyzing, as shown by Figure 2.  

They consider two conceptualizations’ processes of learning, one regarding actions within a computer environment and 

another emphasizing heuristic or discovering processes in problem-solving (Silva et al., 2020). They investigated how elementary 

school and university students approached a mathematical task in a programming environment. It was observed that both groups 

used constructionism practices and enhanced learning by using computer programming to create and manipulate dynamic 

models of mathematical relationships through the elaboration and testing of conjectures, experimentation with technology and 

thinking with media. A significant difference emerged in the final, more complex task, where university students demonstrated 

more solution attempts and a greater variety of heuristic components compared to 6th year students, evidencing a qualitative 

difference in the ways of thinking mathematically and acting computationally between the two groups (Silva et al., 2020). 

The fact that undergraduate students think in a more sophisticated way in terms of heuristics may be linked to the group’s 

previous experience, that is, their previous knowledge may be broader than that of the other group. 

METHOD 

When we structured the doctoral research project, we did not expect to use LO in the CT-based mathematical instruction 

training process for pre-service teachers, but we were interested in acquiring experience and understanding about how early years 

students could explore mathematical ideas when developing coding activities. After the pupils’ intervention and analyzing the 

data, we visualized how powerful would be to use the pupils’ Scratch codes and videos to train pre-service teachers, in terms of 

our main doctoral research goal. Transforming these codes and videos into LO is a strategic approach that holds great potential 

for enhancing teachers’ teaching proficiency. 

This study seeks to address the research question “How can the development of LOs be designed to improve the pedagogical 

skills of future teachers, enabling them to understand how to teach effectively and facilitate students’ learning about CT based on 

mathematics instructions?”. 

Participants and Data Collection to Create Learning Objects 

We analyzed the activity developed by two primary school students from the São Paulo State in Brazil. The 9-year-old student 

was in grade-4 and had face-to-face meetings. We referred to him as “F student”. The other student was 10 years old and was in 

grade-5 and had remote meetings. We referred to him as “R student”. Both had 1-hour session per week for 2 months in 2021, to 

carry out programming activities in Scratch. The goal was to produce a game like Google Chrome’s dinosaur game.  

The dinosaur game1 consists of making a dinosaur jump some obstacles shown on the screen. These obstacles are always in a 

horizontal direction and whoever is playing needs to press a key to make it jump–the dinosaur will move in a vertical direction. 

The game will end if the dinosaur touches the obstacle.  

Data were collected from students’ protocols, training’s video recordings, and Scratch’s programming code developed. This 

research is registered with the Research Ethics Committee (Comitê de Ética em Pesquisa–CEP) under Certificate of Presentation 

of Ethical Appreciation (Certificado de Apresentação de Apreciação Ética–CAEE) number 40924020.2.0000.5493, opinion number 

4.481.578. 

 
1 To play the game, type chrome://dino/ in the Chrome browser. 

 

Figure 2. Constructionism and problem-solving components by Silva et al. (2020) 
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Learning Object Creation  

When we are structuring a course, discipline, or specific content area, there is flexibility to employ diverse sizes and 

arrangements of these LOs. In this sense, there were created four LO intended to be used to instruct pre-service teachers about 

how the mathematical knowledge of students rises in a programming activity and help them improve their CT skills when 

conducted by teachers who use constructionism. The LO created from F student activities consists in a video, where the computer 

screen was recorded diagonally during the intervention, and a table that shows a piece of a talk between teacher and F student to 

highlight the main math topics they discussed including the Scratch coding. The LO created from R student activities consists only 

of a video. We did not add a table because the computer screen was completely recorded during the intervention, allowing the 

viewer to see everything clearly.  

To create a LO video type we need first record it, then decompose it into coherent parts that can be cut, and then edit it. The 

four videos created were edited to students’ anonymization and to show only the situations that imply the use or generating math 

knowledge, considering problem-solving, constructionism, CT skills and concepts. These are the pedagogical content we 

established as the specific piece of educational content to be encapsulated in a LO. After all, deciding the granularity of a LO is not 

an easy task, so we support ourselves in Wiley (2002) to determine the piece of educational content when he says that “from an 

instructional point of view, alternatively, the decision between how much or how little to include in a LO can be seen as a problem 

scope” (Wiley, 2002, p. 10). Furthermore, we rely on Ball et al. (2008) and their pedagogical theory to classify the pedagogical 

content, making clear the modularity of LO. Table 1 summarizes the technical characteristics of LO and Table 2 shows the 

approaches used to develop them. 

Table 1. LO’s technical characteristics 

LO characteristics 
Actor’s jumping Obstacle’s movement 

OA1F (F student) OA1R (R student) OA2F (F student) OA2R (R student) 

Format Video + table Video Video + table Video 

Video time 9 m 19 sec 16 m 59 sec 12 m 13 sec 11 m 31 sec 

Description 

F student demonstrates 

how to program the 

actor’s jump by presenting 

the reasoning he used to 

solve the problem. 

R student demonstrates 

how to program the 

actor’s jump by presenting 

the reasoning he used to 

solve the problem. 

F student shows how to 

program the obstacle’s 

movement by presenting 

the reasoning he used to 

solve the problem. 

R student shows how to 

program the obstacle’s 

movement by presenting 

the reasoning he used to 

solve the problem. 

Purpose 

It aims to show training teachers how is possible to use: (1) pupil’s mathematical knowledge in a 

programming activity to develop their CT skills, (2) programming activities to generate new math knowledge, 

and (3) the constructionism and problem-solving approaches to conduct the pupils learning. 

Abstraction (focused on specific 

activity) 

Pupils learning: focus on movement in y axis: 

• Switch costume 

• Change y axis parameter 

Pupils learning: focus on movement in x axis: 

• Negative steps 

• Use of the edge sensor 

Encapsulation (packing a 

specific piece of educational 

content) 

Pedagogical content knowledge (PCK) (Ball et al., 2008) to teacher: constructionism and problem-solving 

approaches used to conduct pupils learning. 

Modularity (breaking down 

complex topics or learning goals) 

PCK: Problem-solving process described by students–Knowledge of content and students (KCS) from Ball et 

al. (2008, p. 403); constructionism approach followed by teacher–Knowledge of content and teacher from Ball 

et al. (2008, p. 403), and Pupils’ mathematical knowledge applied to solve the problem–KCS from Ball et al. 

(2008, p. 403). 

Reusability (reused across 

different courses, modules, or 

educational context) 

Teacher’s training process purposes: (1) to facilitate the understanding about CT skills and concepts, (2) to 

show math activity developed with coding in Scratch, (3) to show how teacher can lead a problem-solving 

process with students, and (4) to compare the students learning in a face-to-face or remote class, and others. 
 

Table 2. LO’s approaches 

LO approaches 
Actor’s jumping Obstacle’s movement 

OA1F (F student) OA1R (R student) OA2F (F student) OA2R (R student) 

Constructionism approach 

(teacher’s conduct and 

questions) 

• Set of questions used by the teacher to simulate the 

actors walking in the same place (switch the costumes) 

• Set of questions used by the teacher to help students 

perceive how a vertical movement could be 

implemented. 

• After thinking about the questions, students coded 

their ideas what they understood. 

• Set of questions used by the teacher to remind 

students how the sensor works. 

• Set of questions used by the teacher to help 

students perceive how a horizontal movement to 

the left could be implemented. 

• After thinking about the questions, students coded 

their ideas what they understood. 

Problem-solving 

(Schoenfeld’s, 1985 and 

Polya’s, 1945 phases) 

Problem-solving phases overlap as students think, strategize, code, and assess solutions during teacher’s 

discussions. 

Math knowledge (Ye et al.’s, 

2023 framework) 

Pupils’ learning in CT-based math instructions: (1) applying mathematical knowledge to construct CT artefacts, (2) 

applying mathematical knowledge to anticipate and interpret CT artefacts, and (3) generating new mathematical 

knowledge in parallel with CT development. 

CT concepts (Rachmatullah 

et al.’s, 2020 framework) 
Data, conditional, loop, and algorithm. 

CT skills (CT definition from 

Selby and Woollard, 2013) 
Abstraction, decomposition, agorithm design, pattern recognition, evaluation, and generalization. 
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Data Analysis 

We analyzed the students’ mathematical learning data outcomes by Ye et al. (2023) framework; their coding was analyzed to 

highlight the CT skills and concepts used considering Selby and Woollard (2013) CT definition and by Rachmatullah et al. (2020) 

framework which were combined in this research. Finally, we used Silva et al. (2020) framework to highlight the constructionism 

process used to solve the problem, which was the pupils’ own version of the game. 

To assess the quality of the LO2 created we used a tool developed by El Mhouti et al. (2013) with 20 questions that facilitates 

two distinct types of evaluations. Firstly, it supports a comprehensive assessment of the quality of digital learning resources in 

education using a rating scale, providing a broad overview of the assessed products’ quality. Secondly, these 20 questions allow 

for a detailed evaluation of each specific section (academic, pedagogical, didactic, and technical), offering insights into the quality 

of individual aspects.  

The four LO were evaluated by 57 pre-service teachers during the CT-based math training process occurred in October and 

November of 2023, which took place in a university from Portugal. The pre-service teachers training is also registered with the 

Research Ethics Committee under Certificate of Presentation of Ethical Appreciation number 54311321.2.0000.5493, opinion 

number 5.294.198. 

RESULTS, ANALYSIS AND DISCUSSION  

Besides, to analyze the student’s learning process was based on constructionism and problem-solving, we highlighted how 

mathematical knowledge emerged in this process of coding a game. These characteristics must be inner to the LO created to 

achieve our expectations when using these LO during the process of training pre-service teachers. Therefore, an illustrative 

example was given for each aspect of the Ye et al. (2023, p. 17) framework, to demonstrate how students’ mathematical reasoning 

emerges and is facilitated from computational contexts. 

We presented in this section the results, the analysis and the discussion of which math aspects were incorporated in the LO, 

then we highlighted the constructionism and problem-solving approaches, ending with the results from assessment grid of the 

quality of a digital learning resource (El Mhouti et al., 2013) responded by pre-service teachers about the LO functionality. 

Applying Mathematical Knowledge to Anticipate and Interpret CT Artefacts 

Ye et al. (2023, p. 17) showed how the students draw upon their mathematics to anticipate and interpret CT outputs and how 

these processes are tied to their debugging practices. They found other three themes which relate directly to debugging practices, 

students can  

(a) recognize a buggy program by comparing the outputs with the anticipated outcomes,  

(b) fix the bugs by reconsidering the mathematical relationships relevant to the situation, or  

(c) fix the bugs by modeling the mathematical behavior underlying the program. 

To illustrate this situation, we choose to explore the following problem: the students had to program the actor’s jump (the 

actor that stands for the dinosaur in Google’s game). This actor’s jump was encapsulated at LO called OA1F and OA1R described 

in Table 1. 

Figure 3 shows the final code implemented by the pupils to move the actor vertically, or to simulate the actor’s jump. It is 

noticeable how similar the codes from two students are–this was already discussed in another article (Dobgenski et al., 2024). 

To implement the actor’s jump the pupils had to understand the actor’s movement must be in the vertical direction what 

means they had to realize they needed to change the y axis parameter. To verify if the parameter needed to change to a higher or 

a smaller number, they changed the actor position in the stage. In the code pupils used the “go to x y” command, but they modified 

only the y parameter.  

 
2  The LO created and research dataset are available in the University of Minho Repositorium at 

https://doi.org/10.34622/datarepositorium/WIDQQF  

 

Figure 3. F and R students’ coding to move the actor vertically–presented in OA1F and OA1R (Source: Field study) 

https://doi.org/10.34622/datarepositorium/WIDQQF
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To implement the actor’s jump, they used a sensor that recognizes when a key was pressed. In this case the following steps 

occurred inside of the conditional command if 

(1) the first command changed the y value to a higher number,  

(2) the second command made the actor wait a specific time to return to its original position, which was made with  

(3) the third command to set up the y value to its original value, what means the actor’s position on “the ground”.  

But it did not work at the first attempt because to make the jump work precisely, they had to verify how high is the obstacle, 

i.e., its vertical size. With this information the pupils had to calculate the right y parameter to the actor’s jump be high enough to 

not touch the obstacle. In this sense, the pupils had to recognize when the program didn’t work by comparing the outputs with 

the anticipated outcomes and fix the bugs by reconsidering the mathematical relationships relevant to the situation, exactly as 

described by Ye et al. (2023, p. 21). 

This understanding reveals some CT concepts as conditional, data (to set the y parameter) and algorithm. The main 

mathematical knowledge they mobilized in this task were: comparison of numbers, subtraction, addition, percentage, direction, 

and orientation. It is worth saying these students did not know about Cartesian planes before.  

Applying Mathematical Knowledge to Construct CT Artefacts 

In this aspects Ye et al. (2023) discussed how students apply their mathematical knowledge to construct CT artefacts, including 

the challenges they may experience during the application (p. 18). 

There are also multiple examples that could be used to represent this situation from the coding process made by the pupils. 

To further demonstrate it we chose to explore the following problem: the students had to program the obstacle’s movement 

always moving from right to left of scenario side. This obstacle’s movement was encapsulated at LO called OA2F and OA2R 

described in Table 1. 

Figure 4 shows the final code implemented by the pupils to move the obstacle from right to the left edge of the stage. Again, 

both students’ codes are pretty similar.  

To implement the horizontal obstacle’s movement from the right to the left side of the scenario, they had to understand the 

starting position of the obstacle and its movement to the left side to set the parameter, that represents the number of steps, to a 

negative number. That means that they had to learn in this process how to calculate this parameter by subtracting the length of 

the steps from x values. To understand that they had to visualize when the obstacle was at the right side his position in x has a 

greater value than x value when the obstacle was located at the left side, so if they would subtract a step’s length from the initial 

position the actor will move backwards.  

But the obstacle must arrive on the left side, so they had to realize this movement had to be continued until the obstacle 

reached the left side and not just give one step backwards. Another perception they had was about the size of the steps, if it was a 

small value than the obstacle moves slowly, if it was a great value the obstacle runs. The parameter was set to “-5” by both pupils 

after testing the code (Figure 4). 

Finally, the pupils had to identify if the obstacle touched the left side and if it was true had to set its new position at the 

beginning of the right side and repeat these operations again, until the game is over. This understanding reveals some CT concepts 

as loop, conditional, data (to set the x parameter) and algorithm what means to present the right sequence of the commands.  

The main mathematical knowledge they mobilized in this task were: comparison of numbers, subtraction, negative numbers, 

successive subtraction by repetition, unit (step), direction and orientation. It is worth saying these students did not know about 

negative numbers before.  

 

Figure 4. F and R students’ coding to move horizontally the obstacle from right to left side of the stage–presented in OA2F and 

OA2R (Source: Field study) 
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Generating New Mathematical Knowledge in Parallel With CT Development 

Ye et al. (2023) also explain the reciprocal influence in the sense that students’ engagement with CT-math integrated tasks are 

generative to growth in their mathematical knowledge and identified “three avenues through which new mathematical 

knowledge emerges in CT-based mathematics activities” (Ye et al., 2023, p. 21-22): 

1. students can construct mathematical ideas and relationships by reflecting on CT outputs, 

2. new mathematical ideas are constructed is reflecting on the programming processes and code features, 

3. CT-based mathematics instruction motivates a new form of mathematical knowledge that is represented by 

computational languages and unique to CT contexts.  

We observed some of these conditions in the two problems stated before: obstacle’s movement and actor’s jump. When pupils 

were engaged in the activity of programming the horizontal movement of an obstacle in the right-to-left scenario, they need to 

use a negative number to represent this direction of movement introduced them to a new mathematical concept which they had 

not learned yet. Reflection on the program’s output, that is, the observation that the use of a negative number of results in the 

desired movement of the actor, leads to the construction of a new mathematical idea: that of negative numbers and their 

applications. 

When the students understood the vertical movement of the actor, to simulate a jump, also constructed new mathematical 

ideas and relationships about Cartesian plane by reflecting on CT outputs related with the actors’ movements in the Scratch stage. 

They understood the combined value of x and y will indicate the actor location, x for horizontal and y for vertical (Dobgenski & 

Garcia Silva, 2022). The student was applying mathematical concepts–specifically, the use of coordinates to position and move an 

object in a two-dimensional space–in a manner that is intrinsic to programming and CT contexts. Even without prior formal 

knowledge of the Cartesian plane, the students were exploring these mathematical concepts through computational language 

and logic. 

Problem-Solving and Constructionism 

Following Silva et al. (2020) framework the pedagogical approach used by teacher was intended to make the pupils think about 

the problem they were facing at that time. In this learning process the teacher asked how the motion occurred in the original game 

because they needed to understand it to develop their own version and find a way to program these movements in their 

algorithms. The teacher’s questions were about  

(1) if it was the actor (dinosaur) that was running through the scenario or not,  

(2) about the actor’s physical appearance when he was running and when he touched the obstacle,  

(3) about the scenario appearance and so on.  

All the questions asked by the teacher were directed to arouses the pupil’s attention to the game details. The teacher’s 

targeted questions about the game details are crucial in moving students from a superficial grasp of the game to a deeper strategic 

comprehension. This process aligns with Polya’s (1945) emphasis on understanding the problem but extends it by actively 

engaging students in the problem’s specifics, which is central to Schoenfeld’s (1985) methodological approach. 

With the constructionism perspective in mind, the teacher’s questions and acts were done to guide them to think about their 

choices when coding the game, and not to give them the answers. The students had to reflect on each part of the game and 

understand how they could do it, including the mathematical knowledge they had to use as they were not explicitly guided about 

it. It is worth noting that our aim was for the students to discover their own way to solve the problem. 

Figure 5 shows the situation described before, but from the perspective of the frameworks proposed by Silva et al. (2020) and 

Rachmatullah et al. (2020). At the first column is presented an example from student’s game coding which problem was to develop 

the obstacle’s movement in the game–as mentioned before. Both frameworks are presented in the next columns, the 2nd to 4th are 

about Silva et al. (2020) framework that explores the phases to solve a problem and the last column shows the CT concepts used 

in Rachmatullah et al. (2020) framework.  

At the second column we presented a chat between the teacher and the students, where is possible notice how the students, 

debugged, explored, reflected, analyzed when they were facing that problem. This structure provides an easy way to understand 

how the pupils described their misunderstandings and which steps they planned to solve the problem. The execution and verifying 

phases were highlighted with some prints of the results presented in Scratch from the solutions they implemented. In the last 

column, there are the CT concepts from Rachmatullah framework. Both students used the same CT concepts.  

R student 

The R student’s conduct described in Figure 5 was extracted from the LO OA2R. Analyzing the chat between the teacher and 

the R student, Figure 5 table, we notice that was inside this situation that the debugging process was initially prompted by the 

teacher’s question about why the movement of the rock didn’t work as expected–the R student used a rock as the obstacle in his 

game version. This question sets the student for exploration, pushing him to examine the code and its outcomes more closely. The 

student’s attempt to reuse the code for the opposite movement without adjusting for directional values indicates an initial lack of 

understanding of how coordinate systems work in programming. The exploration process is evident when the teacher guides the 

student to observe and articulate the difference in the x values associated with the rock’s movement. This observational step is 

important in debugging, as it helps in identifying where the logic deviates from the expected. 

Reflection is motivated by the teacher’s questions, which encourage the student to think critically about the relationship 

between the direction of movement and the numerical values that represent the positions on the x-axis. By reflecting on the 
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teacher’s question regarding the comparison of x values, the student can recognize how negative numbers are used to represent 

direction within a coordinate system. The analyzing process becomes more apparent as the student attempts to rectify the issue 

by setting the “move” command to zero, which leads to a failed attempt. This failure prompts further analysis and a deeper 

understanding of the problem at hand. The teacher’s follow-up question about the effect of a “move” command with zero value 

serves as a critical moment for the student to analyze why their attempted solution was ineffective. When the student suggests 

using “-20” to achieve the desired movement, it shows an application of their reflective and analytical process, adjusting their 

approach based on the understanding that negative numbers can represent movement in the opposite direction. 

 This dialogue highlights several important aspects of learning through a constructionism strategy as described in the 

sequence. 

Active learning: The student is actively engaged in solving problems through experimentation and observation, which are the 

keys to effective learning in CT and programming (Wing, 2006). 

Math conceptual understanding: Through debugging and teacher-guided reflection, the student moves beyond rote 

memorization to a better understanding of how numbers can represent direction and movement in programming stablishing 

relationships with Cartesian plane. This situation is like that described by Ye et al. (2023) about a study where students “used the 

command repeat to model the relationship between total distance and step size […] constructing a multiplicative relationship 

between the quantities involved” (Ye et al., 2023, p. 18). 

Problem-solving skills: The process of identifying the problem, hypothesizing solutions, testing, and revising approaches 

enhances the student’s problem-solving skills (Polya, 1945; Schoenfeld, 1985). 

Teacher’s role: The teacher plays a crucial role in guiding the student’s thought process without directly providing the answer, 

facilitating a learning experience that encourages independence and resilience in facing challenges. Polya (1945) had explained 

the teacher role: 

One of the most important tasks of the teacher is to help his students. This task is not quite easy; it demands time, practice, 

devotion, and sound principles. The student should acquire as much experience of independent work as possible. But if 

he is left alone with his problem without any help or with insufficient help, he may make no progress at all. If the teacher 

helps too much, nothing is left to the student. The teacher should help, but not too much and not too little, so that the 

student shall have a reasonable share of the work (Polya, 1945, p. 1). 

What Polya (1945) said about the role of the teacher is one of the deepest and most important questions about being a teacher. 

Devotion, practice, and solid principles are fundamental for these professionals to continually train and seek better performance 

in classes. There is no end to learn in this profession. Tardif (2002) emphasizes the importance of teachers’ knowledge and skills, 

not just in academic terms, but also in the personal and social development of students. Therefore, teachers who teach future 

teachers could be committed to discussing these aspects of the profession with students to get them to reflect on their future 

profession. After all, the impact of a teacher on a student’s life is unimaginable. The LO described in this paper were created with 

this purpose: to help future teachers or teachers that are students to improve themselves by showing the knowhow about helping 

pupils to think about their academic challenges. 

 

Figure 5. R and F student’s codes interpreted by Silva et al. (2020) and Rachmatullah et al. (2020) frameworks 
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F student 

The F student’s conduct described in Figure 5 is the LO OA2F table. We can see the chat between the teacher and the F student 

starts similarly to the occurred between the teacher and the R student in OA2R. By questioning the F student about how to 

decrease the steps, the teacher encourages exploration and experimentation. When the student suggests setting the move 

command to zero and then revises it to minus one, it indicates an engagement with trial and error–one part of learning 

programming and CT. 

After the student implements the change, the teacher asks about the outcome. “What happened to the tree now?” – the F 

student used a tree as the obstacle in his game version. This prompts the student to reflect on the effect of their code 

modifications, recognizing that while the tree stopped, it did not achieve the intended continuous movement across the scenario. 

Such reflection is the key to understanding the cause-and-effect relationships in programming. 

In the final part of the conversation, the student’s explanation reveals his logical reasoning–utilizing negative values for 

directional control, conditional logic for boundary detection and response, and looping to sustain the action indefinitely. This 

narrative confirms the student’s comprehension of the task and their ability to devise a sequence of operations that were aligned 

with their strategy to solve the problem. The understanding demonstrated by the student indicates a thoughtful integration of 

concepts to achieve a desired interactive behavior within the program. This segment of the dialogue underscores the student’s 

capability to synthesize various programming constructs, reflecting in a significant cognitive and computational development. 

LO Functionality Assessment  

The El Mhouti et al. (2013) proposed an assessment grid that emerges as a tool designed to guide the creation and evaluation 

of digital learning resources in educational settings. Its primary purpose is to serve as a benchmark for educators and pedagogical 

agents in developing activities that incorporate digital resources effectively into their teaching methodologies. This tool may help 

them to reflect on their use of digital resources, ensuring these tools not only supplement traditional teaching methods but also 

enhance the learning experience for students. 

Table 3 shows the results of the four LO we created which were assessed by 57 pre-service teachers who participated in a CT-

based mathematics training program that took place in October and November of 2023. 

All four LOs (OA1F, OA1R, OA2F, OA2R) are categorized within the 81 to 100 range, indicating they are excellent educational 

resources. This means they offer diverse functionalities and satisfy the established quality criteria effectively, i.e., “Excellent 

educational resource with various functionalities that meet the required quality criteria” (El Mhouti et al., 2013, p. 30). 

Academic quality 

Scores range from 22.5 to 22.8. 

This category shows very consistent high performance across all LO, indicating that from an academic standpoint, the content 

is of high quality, relevant, and likely aligns well with educational goals. 

Pedagogical quality 

Scores are consistently around 22. 

Like academic quality, the pedagogical quality scores are high and consistent, suggesting that the LO are designed with 

effective teaching strategies, supporting learning processes efficiently. 

Didactic quality 

Scores vary more significantly in this category, ranging from 19.8 to 20.6. 

This category shows slightly lower scores compared to academic and pedagogical quality, indicating space for improvement 

in how the content is presented didactically.  

Technical quality 

Scores range from 21.5 to 22.0. 

The technical quality also scores highly, though there’s a slight variation that suggests some LO may have better technical 

implementation than others. Factors such as user interface design, accessibility, and reliability could influence these scores. 

Despite the variations in scores across different categories (academic quality, pedagogical quality, didactic quality, and 

technical quality), the overall performance of each LO suggests a high level of quality following El Mhouti et al. (2013, p. 30) rating 

Table 3. LO’s assessment by El Mhouti et al. (2013) tool 

Section of the assessment grid 
Learning objects 

OA1F OA1R OA2F OA2R 

Academic quality 22.8 22.6 22.5 22.5 

Pedagogical quality 22.1 22.0 22.0 22.0 

Didatic quality 19.8 20.6 19.8 20.0 

Technical quality 21.6 22.0 21.6 21.5 

Total 86.3 87.2 85.9 86.0 
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method. These objects have successfully integrated key educational aspects and technical features, suggesting them as good tools 

for educational purposes. 

This observation gets stronger by the pre-service teachers’ perception about their point of view about what they learned from 

LO used in their training. 

Comprehension about how to develop CT using math instructions 

I think that a good way to encourage students to develop aspects of the CT while learning mathematics would be to present 

them with a complex problem so that they can break it down into smaller parts and solve it in parts through logical 

reasoning (student 15–11/06/2023). 

Student 15 recognizes decomposition as a method that enhances students’ problem-solving and logical reasoning skills and 

focuses on analytical methods for tackling mathematical problems. It is important to highlight that decomposition is one of the 

four CT pillars which are considered fundamental for the solving problem process in CT (BBC Learning, n. d.). Also, this thought is 

aligned with the results of Kallia et al. (2021) found in their research with 25 mathematics and computer science experts regarding 

the opportunities for addressing CT in mathematics education. The participants understand that integrating CT into math 

education isn’t just about using technology but involves cultivating a deep understanding of problem-solving processes that are 

enhanced by computational methods. 

Comprehension about the solving problem process  

I admit that I do not feel prepared to stimulate the development of CT skills while allowing the student to learn 

mathematical content, even so, I recognize that perhaps stimulating the resolution of problems in parts (decomposition), 

or problems that require applying the same reasoning to different variants (algorithms and patterns), allowed students to 

indirectly develop these CT skills (student 11–11/07/2023). 

Student 11 is unsure about integrating CT into math education but sees potential in teaching problem-solving through 

methods like decomposition and applying consistent reasoning to different problems as ways to indirectly develop these skills in 

students. This student understanding is according to Kallia et al. (2021) outcomes, since their research participants perceive 

problem-solving in the context of CT as a structured process that often involves breaking down complex problems into simpler, 

more manageable parts, i.e., decomposition. This understanding also includes recognizing patterns, abstracting problems to their 

essential elements, and employing algorithmic thinking to devise solutions. 

Comprehension about the teaching method  

The teacher played a more passive role, that is, she allowed the student to discover and try. However, she was always there 

to help, guide and question if something was not going as expected. The teacher helped and guided the student, but always 

without intervening too much, that is, she allowed him to think, considered his answers and try and then question himself 

in case something went wrong (student 5–11/07/2023). 

The teacher helped the student to overcome his difficulties, but also let him try so that, if he made a mistake, he would 

learn from his mistakes (student 10–11/07/2023). 

The class, in my opinion, was quite dynamic and allowed the student to acquire knowledge independently. […] This 

teaching practice made mathematical and CT concepts easier for the student as it allowed the student to learn by doing 

(student 8–11/07/2023). 

The students noted that the teacher’s approach of allowing students to explore and try things on their own, while being 

available for guidance and to provoke thought when errors occur, effectively aids in understanding and applying mathematical 

and CT concepts. This constructionism method encourages learning by doing, enabling students to learn from their mistakes and 

develop their problem-solving skills autonomously (Papert, 1986). Also, the participants from research of Kallia et al. (2021) 

recognized an active learning environment where students can engage with both theoretical and practical aspects of mathematics 

as effective for integrating CT into math instruction. This involves using computational tools and languages to model real-world 

problems mathematically and then exploring these models to understand and solve the problems. Educators are seen as 

facilitators who guide the exploration and application of computational methods within mathematical contexts. 

How LO was useful for their understanding  

My learning experience with CT and the Scratch platform was extremely enriching. During class, we had the opportunity 

to watch videos in which students explored the platform with the teacher’s guidance. It was inspiring to see how students 

actively engaged in solving challenges and creating projects using Scratch. Throughout the class, the importance of the 

teacher’s guidance in promoting CT was demonstrated and also how the platform can be a powerful tool for developing 

programming and logical reasoning skills. The subsequent questionnaires helped us reflect on the strategies and 

approaches used by the students and the teacher, encouraging us to apply different methods in our future (student 5–

11/07/2023). 
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Regarding the use of LO, I understood that these are digital educational resources that serve to support the teaching and 

learning process, whose main objective is to provide an effective means to facilitate understanding and acquisition of 

knowledge. My experience with this resource to understand CT, mathematics teaching and teaching practice was quite 

pleasant as I did not experience any difficulty in identifying the mathematical themes covered in the activities (student 15–

11/06/2023). 

I had a good impression of the teacher who was always available to clarify our doubts and greatly facilitated the process 

of learning the very concept of CT, which, despite being a complex concept, was much better understood by we students 

(student 7 11/07/2023). 

The usefulness of digital learning resources, according to El Mhouti et al. (2013), depends significantly on its design and its 

alignment with pedagogical objectives, focusing on its educational quality. According to students’ thoughts, they appreciated the 

LO for its ability to facilitate the understanding of CT, mathematics, and teaching practices through interactive and guided 

learning, which makes them useful, as El Mhouti et al. (2013) explained.  

These reports show that the LO used in the pre-service teachers training facilitated the understanding of the aspects that were 

the objective of that class:  

(1) how to develop a CT based math activity in Scratch could be useful for the students’ mathematical learning,  

(2) the pupils’ understanding of CT skills and concepts, and  

(3) the process used by teacher to help pupils solve the problem. 

Ye et al. (2023) highlighted a significant gap in research regarding “CT-based mathematics instructions taking place in formal 

and interdisciplinary education settings” (Ye et al., 2023, p. 24). They emphasized the critical necessity for continuous professional 

development in emerging educational competencies such as CT-based mathematics reasoning. This study makes a significant 

contribution by addressing this gap in literature, offering valuable insights and resources for professional development programs 

aimed to promote teachers’ competencies in areas like CT. Furthermore, it contributes to start the pre-service teacher’s 

development of their PCK (Ball et al., 2008) with focus on knowledge of content and students and knowledge of content and 

teacher in PCK theory, which one will be studied in a future work.  

CONCLUSIONS 

We aimed to develop LO as tools to help enhance the pedagogical skills of pre-service teachers, with a focus on teaching 

methods and content domain. This goal prompted us to consider the technical specifications and pedagogical concepts essential 

for crafting effective LO. Specifically, we sought to instruct pre-service teachers on how students can apply or expand their 

mathematical knowledge through CT-based activities. Our approach emphasized constructionism and problem-solving 

methodologies, which seems to be a good strategy to develop mathematical concepts within programming tasks to foster 

students’ CT skills, since the LO were assessed by pre-service teachers with a high-quality score for our educational purpose. 

Regarding our research question we understood that the fact of designed the LO with a focus on fostering essential 

pedagogical skills such as teaching methods, student engagement, and the integration of CT into mathematics, effectively prepare 

the pre-service teachers to handle alternative classroom settings with the use of the Scratch. Besides that, through the structured 

scenarios and problem-solving tasks embedded within the LO, the pre-service teachers could visualize and reflecting about 

teaching strategies that fostered a better comprehension of CT concepts among students. This hands-on approach showed 

teachers’ instructional techniques what could improve their confidence in deploying innovative teaching methods that make 

mathematical concepts more accessible and engaging for students. 

Finally, the LO provided insights to the pre-service teachers into how the pupils assimilated and applied CT-based 

mathematical instructions. The LO allowed teachers to observe students’ learning processes in real-time, including how they 

approached problem-solving, how they overcome challenges, and how they applied CT to solve math problems and to learn 

mathematics. 
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