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ABSTRACT. What instructional materials and practices will help students make sense of probability 

notions? Li (11 years) participated in an interview-based implementation of a design for the binomial. The 

design was centered around an innovative urn-like random generator, creating opportunities to reconcile two 

mental constructions of anticipated outcome distributions: (a) holistic perceptual judgments based in tacit 

knowledge of population-to-sample relations and implicitly couched in terms of the aggregate events with no 

attention to permutations on these combinations; and (b) classicist-probability analytic treatment of ratios 

between the subset of favorable to all elemental events with attention to the permutations. We argue that 

constructivist and sociocultural perspectives on mathematics learning can be reconciled by revealing 

interactions of intuitive and formal resources in individual development of deep conceptual understanding. 

Learning is the guided process of blending two constructions of problematized situations: the 

phenomenologically immediate and the semiotically mediated. 

KEYWORDS. Design-based research, cognitive science, sociocultural theory, cultural semiotics, binomial, 

combinatorial analysis, sample space.  

 

In this article, we experiment with a new publicizing format by extracting the intellectual 

background from the main text and consolidating and expanding it in notes that may prove useful 

for readers who wish to delve deeper into the issues underlying and motivating the research. 

These companion research notes may be accessed here; the notes will also be linked to suitable 

places within the text. 
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1. INTRODUCTION 

Background and Objectives 

Educational researchers of probabilistic cognition generally agree that students should be 

given opportunities to work with random generators, such as coins, dice, spinners, as well as with 

computer-based simulations of experiments with these random generators. Using these 

mathematical objects, students are to explore two complementary genres of investigative 

probability activities broadly captured as ‘theoretical’ and ‘empirical.’ Theoretical activities 

include “classicist” combinatorial analysis, a rigorous procedure for determining outcome 

distributions anticipated to result from experimenting with the random generators. Empirical 

activities include “frequentist” experimentation, whether manual or computer simulated, by 

which actual outcomes are generated, aggregated, and represented (Jones, et al 2007).  

By comparing inferences from their theoretical and empirical work, students are expected 

to evaluate and modify their analyses, develop vocabulary for key constructs (sample, distribution, 

random, convergence, etc.), and prepare to re-state these notions using standard inscriptional 

forms, such as probability expressions or the formula for binomial expansion. Yet, whereas 

researchers agree that curricula should target students’ insight into this theoretical–empirical 

complementarity, they do not agree with regards to best practices for enabling this insight. For 

example, opinions range with respect to which media, activities, and activity sequencing may best 

support this inquiry.  

Such questions about instructional design are informed by, yet feed back into, research 

questions related to theory of learning, such as: What perceptual experiences, cognitive and meta-

cognitive capacity, and discursive and meta-discursive practices optimize students’ chances of 

connecting the respective knowledge associated with theoretical and empirical activities? 

Moreover, any educational design is an expression of some pedagogical perspective (whether or 

not the designer acknowledges this), and ideally this perspective coheres with some assumed 

theory of learning.  

However, scholars focusing on either theory of learning, instructional design, or 

pedagogical practice often articulate their theses in light of only one or two of these pillars of 

education – theory, design, and pedagogy – so that, their empirical results notwithstanding, the 

overarching coherence of their published work may be wanting (Kelly 2004, Sandoval & Bell 

2004). In an attempt to triangulate issues of theory, design, and pedagogy, we shall address in this 

paper the following questions:  

 



Abrahamson 197 

• What instructional materials and practices will help students make sense of 

probability notions as theoretical–empirical complementarities?  

• In turn, what can we learn about the nature of deep mathematical learning from 

engaging students in such design? 
 

Design solutions for basic probability vary widely, even within the general umbrella of 

design inspired by constructivist philosophy (see the notes [1] for varieties and purpose of designs). 

Accordingly, this paper does not attempt to arbiter among the designs, many of which have their 

own merits. Rather, the paper positions our recent design solution and in particular discusses the 

consequences of implementing this design, both for students’ experiences and, through analyzing 

these experiences, for our own accumulating understanding of mathematical learning, within 

probability content and possibly beyond. Namely, through explaining the rationale of our 

activities and closely analyzing a case study of one student participant, we will create context for 

commenting on the nature of learning and its implications for design. So doing, we will be 

sketching an analogy between two dualities in need of bridging:  

a) an intuitive-vs.-formal epistemological duality with respect to students’ personal and 

cultural resources in learning mathematical content; and  

b) a cognitive-vs.-sociocultural intellectual duality or ‘dialectic’ (diSessa 2008) between 

vying theories of learning.  

Analogizing these dualities, we argue, bears vital keys both for the theory and practice of 

mathematics instruction. In order to examine these dualities, we begin by exploring the construct 

of ‘cognitive conflict.’ We will offer a reconciliationist interpretation of this construct, and this 

interpretation, in turn, will frame the introduction of the design employed in this study as well as 

the subsequent description and analysis of a case study. 

Epistemological Resources in Need of Bridging 

In the cited studies (see notes [1]), participants’ initial anticipations of random 

distributions were by-and-large incorrect, yet the design successfully engaged the participants in 

activity-based reflection on these thwarted expectations as a means of ultimately promoting deep 

conceptual understanding. In some of these designs, the conflict students experience is between 

their own naïve intuition, which is empirically exposed as flatly incorrect, and the teacher’s 

authoritative mathematics, which turns out to be superior for actual prediction. However, the role 

and value of cognitive conflicts in educational experiments as well as in classrooms has not gone 
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uncontested (see this note [2] for further details). In particular, it has been recommended that 

learners should come to see “how mathematics will reconstruct their intuition” (Borovcnik & 

Bentz 1991, p. 75).  

According to this alternative premise, when most students consistently respond 

incorrectly, it is worthwhile to examine whether they are responding not to the question as the 

researcher understands it but to their idiosyncratic interpretation of the question. Espousing this 

alternative premise, we posited that perhaps a different nature and timing of conflict would foster 

learning experiences better aligned with constructivist pedagogical philosophy. Specifically, we 

wondered whether contexts could be created in which students’ cognitive conflict pertaining to 

basic notions of probability would be resolved not through rejection of incorrect intuitive 

suppositions in favor of validated mathematical procedures but as reconciliation or synthesis of 

the intuitive and normative. For established precedents to our view on dealing with intuitive pre-

knowledge of learners, see this note [3]. 

Yet, can the intuitive and normative views of probabilistic situations be aligned? Classical 

studies have argued that humans do not reason rationally with respect to probabilistic situations 

(Konold 1989, Tversky & Kahneman 1974). It would thus appear that dissonance between the 

intuitive and the normative is inevitable. However, as Gigerenzer (1998) argues, such traditional 

experimental contexts do not enable participants to bring to bear cognitive schemas that the 

human species has evolved for operating effectively in natural situations pertaining to the 

mathematical study of probability. For more on the complementary pairs of immediate perception 

of phenomena vs. indirect, artificial construction of theoretical concepts, see this note [4]. 

• Our premise, in accord with constructivist and ecological views: students’ intuitive 

inferences must, by some interpretation, be regarded as mathematically sound. 
 

Accordingly, we need to determine how students are understanding our questions when 

they consistently err by normative mathematical standards. Moreover, we conjectured that 

students’ alternative understandings of mathematical questions mark the pivotal issues that the 

design must target, because the students would not be able to make sense of the mathematical 

formulations of a problematized situation unless they could view the situations as mathematicians 

do.  

Thus, we posited that it is desirable to design instructional contexts that elicit the 

student’s and teacher’s differing views so as to create instructional opportunities for targeting this 

conflict directly (Borovcnik & Bentz 1991). To enable productive discourse around the conflict, 
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we wished to embed the conflict in activities involving an actual object – the conflict might then 

become the dyad’s struggle to articulate what this object actually is.  

• We pursue this conjecture: At the core of cognitive conflict is a situation in which two 

alternative perceptual constructions of an object obtain, where one is more intuitive 

yet mathematically delimited and the other is mathematically valid yet unintuitive. 
 

This conjecture builds on the anticipation that semiotic forms, in which students are 

required to re-present their perceptions of naturalistic situations, may be either more or less 

compatible with students’ mathematically sound intuitive inferences: More on the relations 

between mediate and immediate, natural and artifactual knowledge may be seen from this note [4]. 

Consequently, the educational interaction becomes one of negotiating ways of seeing the world; 

learning transpires as an internalization of the dialectic between intuitive and normative views. 

In order to foster situations that enable learning as a reconciliation rather than a 

substitution of knowledge, we searched for a context in which students’ initial intuitive judgments, 

which are often expressed in naïve forms, would be affirmed, rather than disproved, as 

mathematically normative. Our working design solution was to create a problem context wherein 

students would:  

a) observe a random generator and cast judgment with respect to the anticipated outcome 

distribution that would result from experimenting with it;  

b) build the expanded sample space of this experiment; and then  

c) recognize consonance between their initial inference and structural properties of this 

space, such as apprehending proportional relations between the subset of favorable events 

and all possible events, or relative to other event subsets. 

Participating in such a design, we projected, students’ experience would change 

dramatically from being proven wrong to learning to argue why they are right. Specifically, the 

design was to foster semiotic leaps – experiences of insight, in which learners appropriate 

mathematical formulations of phenomena as rhetorical means of warranting their tacit judgments 

for these same phenomena, in line with discursive practices of argumentation and proof valued by 

mathematicians (Abrahamson 2009a, 2009b). 

Thus, students would experience symbolical mathematical artifacts not as superior 

alternatives to their intuitive notions but as disciplinary enhancements of these notions (see note 

on related research [5]). The focus of the current empirical study is on understanding the nature 
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and promise of students’ struggle to coordinate intuitive and disciplinary views of phenomena 

pertaining to the targeted concepts, binomial distribution and sample space.  

Theories in Need of Bridging 

Our case study, which demonstrates a learning trajectory typically observed in this project, 

illuminates a pedagogical dilemma germane to any design program informed by the following 

theoretical dialectic – the reader may find more details in note [6]. Namely, our educational 

experiments are informed by two competing background theories: 

• The radical constructivists view learning as subjective construction of mathematical 

concepts (von Glasersfeld 1987). Within a similar orientation, proponents of Realistic 

Mathematics Education seek to promote students’ guided reinvention of mathematics. 

The challenge of this “bottom-up” approach is that it is very difficult to forge a viable and 

effective curriculum upon a guided-reinvention pedagogy. 

• The socioculturalists perceive mathematical learning as a process of acculturation into 

mathematical practice through engaging artifacts within organized social activity (going 

back to Vygotsky 1978/1930). The implication of an acculturation model, however, is that 

students may not be able to make any sense of the mathematical solution procedures they 

learn to perform. 

Thus, on the one hand, we cannot wait for students to “reinvent the wheel,” but on the 

other hand we do not wish to impose solution procedures despotically. Therefore, whether new 

mathematical tools are introduced surreptitiously or brusquely, still the pedagogical challenge is 

to make these tools sensible.  

• How, can we help students perceive cultural mathematical tools as extending their 

intuitive grasp? 

• How can cognitive and sociocultural approaches be reconciled to illuminate this 

learning process? 
 

Bridging Epistemological Resources – Bridging Theory 

We have thus discussed two gulfs:  

(a) an epistemological gulf between students’ intuitive ways of seeing “raw” phenomena as 

opposed to seeing mathematical analytical constructions of these same phenomena; and  
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(b) a theoretical gulf between constructivists and socioculturalists with direct implications for 

instructional practice.  

We will argue that design-based researchers’ constructivist-vs.-sociocultural theoretical 

conflict, reflected in students’ intuition-vs.-artifacts emergent conflict, can both be resolved. The 

following questions lead our investigations: 

• How are design-based researchers to operate who are convinced by the rationale 

of both the constructivist and socioculturalist theory?  

• Are design-based researchers uniquely equipped to reconcile these vying theoret-

ical approaches, specifically because we study students’ mathematical cognition 

by engaging them in activities based on artifacts we ourselves design?  

• If so, what narratives of human learning might we author that abide with both 

theories? 
 

To resolve both conflicts, we must recognize mathematical notions as epistemologically 

equivalent to scientific notions and accept the implications of this view for the project of 

facilitating students’ guided re-invention of mathematical concepts. Namely, both mathematical 

and scientific notions are grounded in phenomenal experiences – either of actual situations that 

are perceived directly or of situations that are perceived indirectly through mediating (semiotic) 

artifacts such as diagrams. Yet, just as the primary phenomenology of magnets is 

epistemologically distinct from the science of magnetism purporting to explain it, so the 

phenomenology of randomness is epistemologically distinct from classicist probability commonly 

used to predict it (see also Liu & Thompson 2002).  

This epistemological gulf between tacit and cultural formulations of mathematical and 

scientific phenomena suggests that students, similar to historical mathematicians and scientists, 

have to notice within situations under inquiry unforeseen properties or patterns and recognize 

their pertinence for warranting intuitive inferences regarding these same situations [7]. 

Below, we begin by presenting the specific design solution we have been implementing 

as a means both of investigating theories of learning and, potentially, promoting the instruction of 

probability. Specifically, we will comment on an apparently pivotal learning process occurring 

even prior to and apparently supportive of the coordination of theoretical and empirical 

probability. After introducing this design, we will discuss in depth a case study of a middle-school 

student engaged in a problem-solving activity based on this design. 
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2. A DESIGN FOR THE BINOMIAL 

The design employed in this study included materials geared to support student activities 

pertaining both to empirical and theoretical probability. The empirical-probability instruments 

were a physical random generator as well as computer-based simulations of experiments with this 

generator, and the theoretical-probability activities involved cards and crayons for creating the 

sample space of the experiment.  

A single mathematical object, the 4-block – a 2-by-2 grid of four squares, each of which 

can be either green or blue – crossed all the materials. The empirical instantiation of the 4-block 

was in the form of a marbles scooper (see Figure 1a), a utensil for drawing samples of (four) 

ordered marbles out of an urn-like tub containing hundreds of green and blue marbles of equal 

numbers (see Movie 1).  

In this particular design we explicitly did not wish for students to initially take many 

scoops, because we did not want them to engage in experimentation that might have led them 

astray from mathematically correct predictions. Thus, we aimed to keep the scooping to the bare 

minimum necessary to enable students to understand the mechanism of this random generator. 

The 4-block featured again in the form of physical cards – initially blank 2-by-2 matrices 

(see Figure 1b), which participants colored in using green and blue crayons so as to create the 

sample space of the experiment. The expanded sample space of this experiment includes sixteen 

unique cards, and a target structure of the activity was the combinations tower (Figure 1c) – a 

particular assembly of the sample space, classified from left to right by the number of green cells 

in the 4-blocks (zero through four) and arranged in vertical columns. Computer simulations of the 

experiment varied according to how they represented the experimental outcomes.  

Whereas some simulations featured conventional histograms with stark columns that by 

default do not keep a record of the specific configurations of green and blue cells (see Figure 1d 

and Applet 1), other simulations featured icons of actual sampled 4-blocks that stack up, as the 

experiment runs, in five “stalagmites” (Abrahamson 2006) (see Figure 2 and Applet 2). Whereas 

the marbles-scooping experiment is, strictly speaking, a hypergeometric approximation (because 

it is without replacement), the computer simulations are truly binomial. 

Note the hybrid nature of the combinations tower (Figure 1c): it assembles the sample 

space in a columnar structure that is visually similar to the histogram featuring the expected 

distribution of actual experiment outcomes (Figure 1d). The rationale of this hybridity was to 

create a bridging context between these theoretical and empirical semiotic artifacts as a means to 
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facilitate students’ juxtaposition and coordination of these complementary structures into a 

grounded understanding of the binomial. 

  

a. The marbles scooper for 
the actual experiment. 

b. A 4-block card for the 
combinatorial analysis. 

c. Combinations tower – an 
assembly of sample space. 

d. Actual distribution produc-
ed by a computer simulation. 

Figure 1. Theoretical and empirical embodiments.  

a. Press “SETUP”, then 

“GO” – the view shows 

the samples in the order 
they were generated  

b. Press “SORT OUTCOMES”
to sort the samples within 
each column by com-
binatorial type. 

c. Press “PAINT OUTCOMES 

BY GROUP” to discriminate
the sixteen groups by 
arbitrary colors.  

Figure 2. Three different views of an outcome distribution generated in the NetLogo virtual experiment “4-Block 
Stalagmite,” corresponding to three modes of interaction with the simulation.  

Specifically, the design for the first two phases of the instructional sequence was for:  

(a)  students to predict the expected distribution in hypothetical experiments with the marbles 

box (Figure 1a), i.e., to appreciate that the most likely scoop has exactly 2 green and 2 

blue marbles, since neither color density is advantaged in the box, and that the all-green 

or all-blue events are equally rare; and  

(b) next, students were to build the combinations tower (Figures 1b&c) and perceive it as 

means of anchoring their unformulated sense of distribution and consequently accept the 

1 : 4 : 6 : 4 : 1 ratio as a quantitative enhancement of their initial qualitative judgment.  

Thus, by working first with the random generator itself and then constructing its sample 

space, students were to triangulate their intuitive, presymbolic prediction for the empirical 

distribution with mathematical interpretation of the expanded sample space.  
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The computer modules were aimed to validate this triangulation by demonstrating that 

the empirical outcome distribution indeed converges on the 1 : 4 : 6 : 4 : 1 structures. In addition, 

a function of these simulations – that they parse the histogram columns into their inner sub-

subsets of elemental events (see Figure 2) – was designed to support students in comparing 

between the theoretical sample space and the empirical outcome distribution and, specifically, in 

seeing the empirical distribution as scaling-up the sample space in a transformation which we 

have named a stochastic–multiplicative stretch (Abrahamson & Cendak 2006).  

That is, each of the 16 equiprobable elemental events in the sample space occurs roughly 

the same number of times, so that in an experiment with, say 1,600 trials, we expect each of these 

elemental events to occur roughly 100 times, resulting in an actual experimental distribution of 

roughly 1×100, 4×100, 6×100, 4×100, and 1×100 samples in the five columns, respectively. The 

unique structure of the virtual experiments as well as the capacity to rearrange its elements 

automatically facilitate a visual mapping from the 16 elemental events in the sample space to the 

16 chunks of empirical outcomes on the computer screen, thus supporting the development of 

bridged theoretical–empirical conceptual models we aimed to foster. 

Yet, as we shall see, even before they arrive at working with the computer-based 

simulations, students already have opportunities to face what appear to be fundamental issues 

inherent to the topic of the binomial – negotiating intuitive and mathematical views of what 

constitutes the elemental object in the experiment and hence in the sample space. In fact, whereas 

we anticipated much difficulty around issues of randomness that lie in coordinating the sample 

space (theoretical) with actual experimental outcome distributions (empirical), we found that 

students are comfortable with the ideas of chance inherent to this theoretical–empirical mapping, 

at least as this mapping is constructed in our particular design (Abrahamson & Cendak 2006).  

Therefore, the case study reported herein focuses instead on the earlier challenge of 

coordinating intuitive and mathematical views of the experiment – views corresponding to the 

marbles box and combinations tower, respectively. We will see that Li, a middle-school student, 

initially viewed the experiment as constituted of five possible outcomes – no-green, one green, 

two green, three green, and four green – whereas the interviewer wished to analyze the outcomes 

further into the expanded sample space that contains sixteen objects, not only five, with 1, 4, 6, 4, 

and 1 elemental events classified in five event sets. The crux of this report is a description of how 

the dyad first came to agreement, and this discursive moment of bridging intuitive and 

mathematical perceptual views is then re-contextualized as epitomizing prospects of bridging 

constructivist and sociocultural theoretical views. 

 



Abrahamson 205 

3. METHODS 

Design-Based Research 

The data used for this study were collected as part of a larger project, Seeing Chance that 

we are conducting in the design-based research approach, which is a conjecture driven paradigm: 

researchers investigate the plausibility of some teaching or learning mechanism. The approach 

goes back to Brown (1992); Cobb, et al (2003) or Confrey (2005) are more recent sources; for 

more details on this research paradigm, see this note [8]. For example, we conjecture that 

grounding students’ analytic understanding of stochastic distribution in their intuitive population-

to-sample expectation of frequency may enable deep conceptual learning of the binomial, and that 

such grounding may be achieved by engaging students in activities supported by materials and 

facilitation techniques designed specifically to achieve this pedagogical goal. 

Upon embarking on a new project, design-based researchers instantiate their conjecture in 

the form of a first-take set of instructional materials. Then, through a sequence of study cycles, 

the researchers iteratively modify and calibrate the design in response to consistent patterns in 

participant students’ observed behaviors. Reciprocally, by reflecting on the nature of these 

calibrations, the researchers define and refine their theoretical models, often developing new 

constructs that may obtain beyond the narrow realm of the specific content and improve further 

research of this nature (“humble theories,” Cobb, et al 2003). 

Fostering Cognitive Conflict over Competing Perceptual Constructions 

Li was one of 28 Grade 4–6 students (9–12 yo) each of whom we engaged in a 1-hour 

one-to-one semi-structured clinical interview. For our reasons for this method and its relative 

merits compared to other options, see this note [9]. All sessions were audio/video recorded for 

subsequent analysis. An interview protocol structured the following activity sequence.  

Participants:  

(a) predicted the actual outcome distribution in a hypothetical stochastic experiment 

conducted with the marbles box and scooper;  

(b) were guided to build the sample space of the experiment and arrange it in the form of the 

combinations tower; and  

(c) operated the computer-based simulated experiments. 

We were in particular interested to see what, if any, connections students would discern 
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among these three activities. Throughout the interview, we used prepared questions as well as 

extemporized follow-up questions to elicit students’ observations and reasoning. The interviewer 

steered the student toward experiencing a succession of cognitive conflicts pertaining to 

conceptual issues key to the domain. In line with the design-based research framework, learning 

axes and bridging tools (Abrahamson & Wilensky 2007), we sought to identify learning issues 

core to the domain and so we focused the object-based discursive interactions on these issues. 

Typical of our designed cognitive conflicts is that students attempt to interpret models of 

phenomena under inquiry as they would the source phenomena. So doing, the students ignore that 

analytic models may re-present phenomena on the basis of unintuitive properties. Viewing these 

models naïvely may thus engender a reading that contradicts the initial inference, even if the 

models in fact support the intuitive inference. 

Specifically, the conflicts resulted from competing perceptual interpretations of objects 

that we intentionally designed to be ambiguous. For example, one of the sixteen specimens in the 

sample space, embodied in the form of a 4-block with a green square in its top right-hand corner, 

might under certain contextual circumstances be interpreted by a participant as an elemental event 

(one of sixteen equiprobable elemental events), yet a participant who does not understand the 

relevance of permutations to the combinatorial analysis might refer to the same object as 

signifying any of the four elemental events with exactly one green square and three blue squares 

in any order (thus referring to a single object as an aggregate event).  

We anticipated that students would need to acknowledge these alternative ways of 

looking at the 4-block in order to use the sample space as a warrant of their informal inference for 

the experiment. Namely, we came to realize, students’ intuitive sense of distribution is tacitly 

couched in only five objects (loosely: no-green, 1-green, 2-green, 3-green, and 4-green), whereas 

the formal expression of distribution explicitly considers all 16 objects grouped in five categories:  

[BBBBBBBB] 
[BBBBBBGG, BBBBGGBB, BBGGBBBB, GGBBBBBB] 
[BBBBGGGG, BBGGBBG, BBGGGGBB, GGBBBBGG, GGBBGGBB, GGGGBBBB] 
[GGGGGGBB, GGGGBBGG, GGBBGGGG, BBGGGGGG] 
[GGGGGGGG] 
Figure 3. Grouping of all combinatorial objects into five classes. 

Our interpretation that students would tacitly couch their intuitive sense of distribution in 

only five objects, with disregard to the internal order of the four singleton events in each, builds 

both on earlier studies (Abrahamson, et al 2006) and on Xu & Vashti (2008), who ran age-

appropriate analogous experiments with 8-month-old infants.  
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The classical experiments by Tversky & Kahneman (1974), too, can be interpreted as 

demonstrating humans’ natural inclination to ignore the order of singleton events in compound-

event outcomes. Thus, when a study participant claims that a coin flipped four times is more 

likely to land on HTHT than on HHHH, the participant may understand the item as a comparison 

between “2 Heads and 2 Tails in any order” and “4 Heads.” Indeed, “2 Heads and 2 Tails in any 

order” is a more likely compound event than “4 Heads” – it is six times as likely. 

Bringing all the above to a concise summary, our focused research objective was to 

examine for any challenges students face as they learn to coordinate:  

(a) their 5-object, aggregate-event-based, population-to-sample, qualitatively correct, tacit 

sense of distribution, which they experience in the context of a problematized source 

random-generator phenomenon; and  

(b) a 16-object, elemental-event-based, quantitatively correct, explicit expression of 

distribution, which reformulates properties of the same source phenomenon. 

A Cohort of Researchers’ Journey towards Understanding Students’ Insight 

Whereas in previous studies we have taken broader analytic scopes of these data, the 

current paper focuses on a single case study so as to discuss in detail relations among situated 

mathematical problems, intuitive perceptual constructions, and guided engagement with 

instructional media, with implications for an integrated cognitive and sociocultural theory of 

mathematical learning.  

Li, our case-study participant, is a 6th grade (11 years old) student evaluated by his 

mathematics teachers to be in the top third of his class with respect to his achievement and 

participation (for case studies of students of other levels and ages, see Abrahamson 2009a, 

Abrahamson, et al 2008). We selected Li, because his behavior was typical of his 

age/achievement group, yet he was particularly articulate in expressing his reasoning. A video 

excerpt of 3.5 min. featuring the culmination of Li’s learning process serves as the focus of our 

discussion in the next section (see Movie 2 and the transcription of it.). 

Over several years, our research team collaborated in intensive microgenetic qualitative 

analysis (Schoenfeld, et al 1991) of the Li video excerpt in an attempt to build a coherent 

explanation of his behavior in light of his entire interview as well as our whole corpus of data that 

included other participant–students’ interviews. We approached the dyad’s utterances, gestures, 

and inscriptions as multimodal, multimedia, multi-semiotic-system goal-oriented expressive acts, 
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in which objects’ emergent meanings are negotiated, often tacitly, by strategically making salient 

their perceptual features and relations (see notes [10] on related work). 

The results section, below, attempts to communicate not only our final interpretations of 

these data but also a key change in our understanding of the data, which occurred along the data-

analysis process. Explaining our own journey – and not only its results – may be of interest, 

because it underscores how difficult yet how crucial it is to listen closely to students (Confrey 

1995) and in particular to appreciate their legitimate alternative constructions of situations and 

questions (Borovcnik & Bentz 1991).  

The validity of our analyses should be judged against the raw data afforded in the form of 

Movie 2, and the generalizability of our claims should be evaluated in light of our larger set of 

findings, which we repeat here below yet elaborate elsewhere (Abrahamson 2009b). 

 

 

4. ANALYSIS OF THE LI CASE STUDY 

Background: The Baffling Issue of Students’ Metonymic Treatment of Elemental Events 

When asked to determine the most likely scoop, all but a single student guessed that it 

would be a two-green-and-two-blue (2g2b) scoop. When asked how they had performed these 

population-to-sample inferences, students were not too articulate – they said that they “just saw” 

the situation that way. All their utterances were constructed as aggregate descriptions of the 

outcomes – they rarely referred to the alternative arrangements of green and blue marbles within a 

given scoop. Below, by way of introducing our analyses of the focal video data from the Li 

interview, we begin by describing a general finding (Abrahamson & Cendak 2006) that greatly 

challenged us yet ultimately led to our current hypotheses, which we then elaborate.  

After a participant had completed the construction and assembly of the sample space, 

such that all 16 elemental events were arranged in the form of the combinations tower, the 

interviewer would lift two cards – a card from the 3-green (3g1b) column and the single 4-green 

(4g) card – and ask the participant to judge whether these two events are equally likely to be 

drawn from the marbles box or whether one of them is more likely than the other (see Figure 4). 

By and large, students would claim that the event represented by the specific 3g1b card is 

more likely to occur as compared to the 4g event card. This, despite our taking measures to ensure 

that the interviewer and student were referring to the same physical object. For example, the 
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interviewer would repeat that he is referring to the particular 3g1b card, not to the group, and the 

student would concur that s/he understood the distinction. Similar results were obtained for other 

between-column card pairs. When asked this question regarding a pair of within-column cards, 

however, students would state that these events were equiprobable because the cards were 

literally “the same.”  

The dyad would then discuss the between-column issue, until the interviewer was 

satisfied that the student stably differentiated between a compound event qua elemental event 

(one of 16) and a compound event qua aggregate event (one of 5). These negotiations lasted 

between 1 to 12 minutes. Curiously, the older and higher-achieving students took the longest to 

stabilize, perhaps because they were more reflective and self-exacting. 

In Abrahamson, et al (2008) we put forth the construct inadvertent metonymy as a 

description (but not yet an explanation) of students’ response on this item. By ‘metonymy’ we 

meant that the student referred, for example, to a single 3g1b card as though it were carrying the 

cumulative probability of the entire aggregate set of four elemental events in the 3g1b column. By 

‘inadvertent’ we qualified students’ semiotic act by acknowledging that the metonymy was 

unintentional. With the construct of ‘inadvertent metonymy,’ we aimed to:  

a) highlight that the dyad agreed on the referent but disagreed on its sense – we thus shifted 

our analysis from attending exclusively to semantic and syntactic features of the 

discursive act to a broader view encompassing semiotic and pragmatic dimensions of the 

situation and deconstructing these pivotal interpersonal dimensions so as to deepen our 

understanding of students’ individual cognition (see also Borovcnik & Bentz 1991); 

b) suggest that the dyad’s disagreement had been tacit – it was exposed only through 

interaction – and, reflexively, that the researchers understood this communication 

breakdown only through post-facto intensive collaborative analysis;  

c) valorize both dyad-member views as viable, given the individuals’ respective math-

ematical knowledge at that time; and, ultimately  

d) hone subsequent data analyses by focusing on the interlocutors’ idiosyncratic sense for 

agreed referents and asking why the students were inclined to see individual elemental 

events as aggregate events and what such legitimate yet non-normative construction 

implies for the prospects of these students appropriating the normative view without 

forsaking their intuitive sense of the situation. 
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Figure 4. A student’s ostensible misunderstanding of the targeted content is explained as a legitimate idiosyncratic
construction of the interviewer’s question: The student ‘sees’ elemental events as aggregate events, because s/he
objectifies the sample space as built of five “things” and thus views the other elements as redundant duplicates. 

In retrospect, though, we have recognized that ‘inadvertent metonymy’ was a figment of 

the researchers’ epistemology – an ontological innovation that helped us make a first pass at the 

baffling data by situating the students’ rhetorical act within our own semiotic frame, yet a first 

pass that did not furnish a viable explanatory model for the students’ reasoning from the students’ 

perspective. That is, the metonymy was never inadvertent – not once did students acknowledge 

their own aggregate construction of a specific 4-block as a metonymy, even when the students 

finally differentiated and named the two competing frames (e.g., “number-” vs. “place-wise”).  

That is, the students had never, in the first place, meant for the 4-block to stand in for 

anything at all other than its iconically similar scoop. Thus, in referring to a particular 4-block as 

an aggregate event, the participants were veritably seeing the card in that way, notwithstanding its 

“glaring” spatial configuration, in the eyes of the interviewer. And yet, from a methodological 

perspective, posing and considering the hypothetical construct of ‘inadvertent metonymy’ was a 

crucial analytic phase in our long-term analysis. Indeed, in the remainder of this section we will 

share more recent insights that this interim construct subsequently engendered. 
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We begin by reiterating that the mathematically informed researcher brings to bear well-

articulated frames that the student has yet to develop. Namely, the researcher clearly differentiates 

between elemental and aggregate events. Plausibly, in some particular discursive contexts the 

researcher might be inclined to refer to a particular elemental event metonymically so as to mean 

the entire event. Yet when the property of likelihood is at stake, permutations must be enumerated 

as singular elements, such that the metonymical reference to the card must give way to regarding 

the card as a unique entity within the sample space. The researcher would then probably refrain 

from referring to a card metonymically, because s/he would recognize the referential confusion 

such signification might engender.  

The students, however, initially lack relevant conceptual structures for selecting between 

aggregate- and elemental-event views of a card. Indeed, the prospects of a learner to build 

mathematically valid structures by coming to see objects in new ways is entirely contingent on 

the learner’s personal goals for the activity that frames these perceptual constructions. At this 

point in the interview, these students do not yet know that attention to permutations is crucially 

conducive of combinatorial analysis; in fact, they do not at all know they are engaging in what we 

call combinatorial analysis! Thus, the students had no goal-oriented premise to appreciate the 

distinction we attempted to highlight between aggregate and elemental views. 

As noted, our discovery of this ‘inadvertent metonymy’ shifted the data-analysis toward 

attempting to understand our participants’ default aggregate-event-based perception of each of the 

16 singular cards in the sample space. We therefore asked, “What activities give rise to students’ 

aggregate orientation toward individual 4-blocks in the sample space?” As the narrative of the Li 

case study will reveal, we have implicated the available media – specifically the interaction 

between students’ contextual intuitions grounded in the marbles box and the materials made 

available for subsequent combinatorial analysis – as explanatory of the researcher’s confusion 

over students’ aggregate views of individual 4-block cards in the sample space.  

In fact, we will present students’ persistent aggregate-event construction of elemental 

events as a desirable transition toward normative understanding of the sample space. We will 

furthermore submit that the available media were challenging for Li’s conceptual development 

yet instrumentally so – the media bootstrapped insight. In particular, we will interpret Li’s 

difficulty as rupture caused by the very semiotic means of objectification (Radford 2003) made 

available for him to reify his tacit psychological objects.  

Thus, the Li case study will problematize cultural tools as double-edged swords, from a 

constructivist perspective. That is, the tools are to accommodate students’ intuitions, yet in order 
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to enhance those intuitions, these tools – perhaps necessarily – incorporate “frictive” elements 

that may initially jar with the intuitive constructions. We further posit that some personal 

cognitive conflicts may emanate from interpersonal discursive conflicts over vying mental 

constructions of instructional artifacts. 

Ontological Imperialism of Available Semiotic Means of Objectification 

Setting the Scene 

At the beginning of the interview, Li was asked to predict “what we will get” when we 

scoop from the marbles box. Interpreting the question as referring to the probable, Li gazed at the 

box and responded that 2g2b would be the most common draw. Subsequently, Li was handed the 

stack of empty 4-block cards and asked to show “what we could get.” Interpreting the question as 

referring to the possible, Li set out to show all the different events. He built a total of five events 

(see Figure 5, the bottom row) and stated that he had completed the task. Namely, Li was content 

that the five cards exhausted the sample space as he perceived it.  

For example, Li saw the card that has a single green square in the top right-hand corner 

(see in Figure 5, directly above the “1” numeral) as signifying “1g3b” (in any order) and made no 

allusions to the fact that there are four unique permutations that all have exactly one green cell 

and three blue cells (see, in Figure 5, three additional faded-out cards above the bottom card).  

 
Figure 5. Metaphorical representation of Li’s mental construction of the combinations tower. Li views the five 4-blocks in 
the bottom row as exhausting the sample space, because he sees each one of the 4-blocks as an aggregate event, not as 
an elemental event, in contrast to how the interviewer sees it. Therefore, Li views the remaining eleven elemental events
above the bottom row as irrelevant to the task of showing all possible outcomes – he states explicitly that any one of 
these eleven 4-blocks could stand in for the 4-block at the bottom of its respective column. 
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A Covert Communication Breakdown 

Whereas Li saw this particular card (see Figure 5) as showing the aggregate event 1g3b, 

the interviewer perceived this same card as showing one of four elemental events that collectively 

comprise the aggregate event 1g3b. Thus, the card is an ambiguous semiotic object whose 

idiosyncratic sense depends on an individual’s knowledge frames and contingent goals. The dyad, 

oblivious to these vying frames, tacitly differed over the meaning of the card. Consequentially, Li 

and the interviewer experienced a communication breakdown, because they did not realize they 

were seeing their joint referent differently.  

This miscommunication, we propose, was caused by what Bamberger & diSessa (2003) 

have called ontological imperialism. Li’s communicative goal is to objectify in material form his 

sense of distribution in the marbles-box experiment – he had not seen order in the scooper and 

now does not see order in the cards. Yet, the media put at Li’s disposal as expressive means of 

representing the sample space – the empty 4-blocks – pre-impose a particular mathematical view 

on the experiment that explicitly foregrounds the spatial configuration of the event, in the same 

way as the scooper was designed to foreground the configuration:  

One cannot, in principle, color in an order-less 4-block, because each of the four cells in 

the 4-block is assigned a unique color. Li, of course, was unaware that by virtue of using the 

available media, he had represented his intuitive judgment such that a skilled user of the medium 

would read into these representations meanings – new layers of signification – that Li had not 

intended or even harbored. But the interviewer, in turn, did not yet enjoy the hindsight of two 

years of data analysis and thus was perplexed by Li’s insistence that the five cards he had created 

exhausted the sample space. 

On the Prospects of Appropriating Mathematical Vision 

Yet how might an expert guide a novice to attend mathematically to instructional 

materials and especially when the mathematical view is at odds with the intuitive view? Could it 

be that novices adopt the mathematical view toward details of the materials only after the 

materials appear meaningful as a whole? That is, could it be that holistic perceptual judgments of 

mathematical representations precede understandings of their analytic premises? Is the logic of a 

semiotic artifact contingent on its global discursive function?  

The spatial configuration of colors in the 4-block is a priori “visible” only to practitioners 

in this disciplinary domain (see Goodwin 1994, on ‘professional vision’), for whom order counts 

in the context of conducting combinatorial analysis. For Li to attend to order, the dyad would first 

need to acknowledge that the student and he are differing in their orientations of view (Stevens & 
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Hall 1998) toward the cards; they would then need to name these orientations; and finally 

negotiate whether one of the orientations is more advantageous toward achieving the common 

goal.  

At this point in the interview, though, Li was oblivious to the goal of combinatorial 

analysis, and so the process of building the five cards appeared to him as no more than an 

opportunity to reiterate his earlier statement about the marbles box, now using semiotic templates 

that enable him to distribute his statement onto a permanently displayed set of scoop images.

If he were given suitable semiotic means for marking upon the five cards their respective 

expected frequencies, we conjecture, Li may likely have done so. One could imagine a variety of 

such means, e.g., using a red marker to indicate upon the five cards the “intensity” of their 

respective felt likelihoods. Conversely, one could give Li five egg cups, in which he would place 

actual marbles that would move around amorphously.  

Yet only combinatorial analysis offers a semiotic means in line with the cultural practice 

of mathematical argumentation – the combinations tower’s five columns inscribe the felt 

frequencies as the events’ vertical projections and, so doing, render the qualitative notion 

quantitatively explicit. Notwithstanding, the central question, for developing theory of learning as 

well as curricula, is precisely how to help Li see the columns as inscribing his felt frequencies. 

In sum, at this point Li did not yet know that by attending to the order of the four 

singleton events in the scoop he would be able to create a set of objects, the sample space, that 

could collectively signify his presymbolic notion regarding the expected outcome distribution in 

the marbles-box experiment. The mathematical pertinence of the analytic procedure he was asked 

to engage was thus temporarily suspended – the procedure could be instrumentalized (Vérillon & 

Rabardel 1995) only once Li knew what the analysis was an instrument for.  

The goal of the activity of coloring the cards was therefore enfolded into their “hidden” 

property of order, and this goal was waiting to emerge retroactively only once the sample space 

were completed and Li saw it as objectifying his intuitive judgment. In other words, for Li to 

understand the utility of combinatorial analysis, he would first need to blend and anchor his 

unarticulated sense of frequency, which emanates from the marbles-box context, into the 16 cards, 

thus synthesizing the intuitive and formal. 

Yet, to do so, Li would need to sustain this unarticulated sense of frequency throughout 

performing the combinatorial-analysis procedure so that it is still phenomenologically available at 

the critical moment of completing the combinations tower. However, ontological imperialism 
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predicts consequences more dire than communication breakdowns between a student and a 

teacher.  

Namely, the student may reflexively come to see the world through the lens of the 

imposed representation and in so doing may lose unarticulated notions vital for connecting these 

mediated representations to the original immediate experiences (Bamberger & diSessa 2003). As 

we shall see, Li was indeed affected by the emerging meanings of the mathematical objects he 

himself had created. We now continue to describe the interview, at the point where Li enters a 

transitional phase of generative confusion. 

From Heteroprobability to Equiprobability and Back Again: Negotiating toward Insight 

Gazing at the five cards he had just created (see Figure 5, the bottom row), Li retracted 

his initial informal inference that 2g2b would be the most likely event and, instead, stated that 

these five events are equally likely to occur. Why did Li behave thus? There are reports in the 

literature on the equiprobable bias – learners’ tendency to judge as equiprobable events that are in 

fact heteroprobable (Falk & Lann 2008, LeCoutre 1992). It might appear judicious, then, to label 

Li’s behavior as exhibiting this same bias.  

However, a unique feature of our interview protocol – that participants first guessed 

correctly the expected frequencies in a random generator and only then built its sample space – 

suggests that the bias results not from initial intuitions for a random generator but from engaging 

the analytic activity of building and/or investigating its sample space, yet using unfamiliar 

expressive objects. That is, the error is due to semiotic activity, not due to situated judgment.  

Returning to our argument, above, recall that Li was not provided semiotic means of 

inscribing into the five 4-block events he created their respective intuited frequencies. And yet, Li 

is not aware that he has not fully inscribed his intuitions – both the objects (events) and their 

properties (frequencies). Therefore, Li tacitly trusts that the cards are carrying all the information 

he had ostensibly inscribed into them – the five objects as well as their relative-frequency 

properties. But, of course, the five event–cards do not in fact bear encoded information regarding 

their respective frequency properties, and so this information may be lost.  

That is, crucial aspects of a presymbolic notion are liable to be attenuated once the notion 

is filtered through a person’s constrained fluency with an unfamiliar representational system, 

consequently breeding conflict between the intuitive and the inscribed. Without intervention, this 

conflict may persist, creating un-connected knowing of mathematical procedures. 
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The interviewer’s objective then became to enable Li to regain the initial sense of 

heteroprobable distribution, by which 2g2b was the most likely event, and coordinate this sense 

with a normative reading of the expanded sample space that highlights the plurality of the 2g2b 

event set in comparison to the other sets. The interviewer thus asked Li to create the permutations 

on the five combinations. Li builds the remaining eleven cards (see in Figure 5, the faded-out 

cards above the bottom row) yet protests that these new permutations are not pertinent to the 

analysis, arguing that the initial question had never been about permutations.  

Li’s contention, paraphrased, is, “If you want me to predict the frequency of 

combinations, why should I care about all these permutations?” For Li, it is as if the interviewer 

had asked him to measure a coin’s diameter as a means of determining its fairness – the property 

being measured appeared to him completely irrelevant to the property in question.  

Immediately, though, Li states that the middle column implies a 6/16 chance for the 2g2b 

event. It appears as though Li recognized in the differential heights of the columns a means of 

expressing their differential property of likelihood, which he had intuited earlier, in the context of 

the marbles box. That is, even though he has been agnostic of the permutations, the “more-ness” 

of the 2g2b column as a whole as compared to the 3g1b column as a whole implies a 

corresponding inequality between the aggregates 2g2b and 3g1b with respect to the dimension of 

likelihood, so that 2g2b feels more likely than 3g1b (on the “More A – More B” intuitive heuristic, 

see Stavy & Tirosh 1996).  

Li thus performs a semiotic leap from his presymbolic gestalt image of distribution to an 

artifact that models the same notion mathematically. Yet… as his gaze wanders to other parts of 

the tower, specifically to the 4g element, Li reasserts his equiprobability bias, by which the five 

aggregate events are equally likely [11]. Li’s hesitance and fickleness are reminiscent of Sfard 

(2007) who discusses the typical “intimations” and “implementations” of students’ emerging 

understandings for mathematical artifacts (see Animation 1 for a schematic representation of Li’s 

shifting attention).  

The interviewer then prompted Li to re-consider the marbles box, thus presumably 

creating an opportunity for Li to re-infer 2g2b as the most likely event. Next, the interviewer 

referred back to the combinations tower. In what followed, the interviewer used a rhetorical mode 

so as to demonstrate for Li an apparent tension between Li’s inferences from his direct 

apprehension of the situation (the marbles box) and the model of this situation (combinations 

tower). Specifically, the interviewer wished to underscore for Li that his immediate intuition 

 



Abrahamson 217 

(regarding the five objects in the marbles box) was heteroprobable whereas his mediated 

inference (for the objects in the combinations tower) was equiprobable.  

The interviewer’s rationale was to restate for Li his own equiprobability bias for the 

combinations tower while highlighting variability in the heights of its five columns. To so do, the 

interviewer produced a contradiction between the contents of modalities of his own 

communication, speech and gesture. Namely, while the interviewer verbally restated Li’s view 

that all aggregate events in the combinations tower are equally likely to occur, simultaneously he 

gesturally drew Li’s attention to the five columns. Li responded to this rhetorical contradiction by 

reaffirming that 2g2b would occur 6/16 of the time.  

Thus, Li appears to appropriate the sample space as a means of objectifying his intuitive 

inference for the experiment that it analyzes. Crucially, it is not the case that Li initially 

understood the principle of permutation expansion and subsequently drew inferences from the 

completed sample space. On the contrary – the mathematically correct inferences were based not 

on the combinations tower but on the source situation, the marbles box. Moreover, all the way 

through to his insight, Li repudiated the rationale of attending to any 4-block in the combinations 

tower beyond the five in the bottom row.  

In fact, Li was eventually willing to consider the five sets of elemental events as relevant 

to the task only because he recognized that the columns’ respective heights resonated with his 

intuitive sense of heteroprobability and symmetry for the outcome distribution in the marbles-box 

experiment, irrespective of the permutation material that made up these columns. Only then, 

perhaps still reluctantly, did Li infer the implication of anchoring frequencies in the columns’ 

heights. Namely, if the height properties of the five columns correspond to the frequency 

properties of the five intuitive events, then the identities of these five columns’ contents should 

map onto the five events, too. Thus, Li spoke of some events (in the marbles box) as occurring 

more often than other events because “these [2g2b elemental events] have more than these [in 

another column].”  

Such comparison immediately instantiates the entire column – not just the single icon at 

its base – as signifying the event under scrutiny. Switching from five objects to five columns, Li 

“smeared” upwards the respective identities of the five bottom blocks, invoking the sets of 

elemental events, not just the five bottom cards, as objectifying his five intuitive events. So doing, 

Li turned from tacitly construing each of the cards as aggregate events to explicitly construing 

them each as elemental events. Li’s perception was thus disciplined. At that moment, the notion 

of an aggregate event could be first articulated as, e.g., “events that have 2g2b in any order.” 
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Retroactively, Li accepted the process of combinatorial analysis as instrumental in predicting 

distributions, but only because its product, the combinations tower, captured his intuitions for 

expected relative frequencies. 

 

 

5. CONCLUSIONS 

Cognition 

We have identified a critical tension between intuitive and formal constructions of 

situations involving a random generator of compound events: intuitive inferences are based on 

viewing the situation as enfolding through a set of aggregate events, whereas mathematical 

analyses of these situations are based on viewing the same situation as also enfolding through an 

expanded set of elemental events.  

For example, people who see a HTTH result of flipping a coin four times, may tacitly 

construct this outcome as “2H and 2T in any order.” Thus, when they are asked to compare the 

likelihoods of HTTH and HHHH and they select the former as more likely, we might believe they 

have inferred that “P(HTTH) > P(HHHH),” a mathematically incorrect statement, whereas what 

they mean is that “P(2H2T) > P(4H),” a mathematically correct statement (see also Borovcnik & 

Bentz 1991). Our perspective raises challenges for Tversky & Kahneman (e.g., 1974), by whom a 

“P(HTTH) > P(HHHH)” claim is flatly illogical, because we are suggesting that the logic of 

people’s decision-making must be evaluated in light of their subjective construction of the 

situation, and that such construction is a function of education not logic. 

Furthermore, note that the probability activities we discussed in this paper were 

“theoretical,” not “empirical.” Whereas we concur with our colleagues that critical learning of 

probability occurs in coordinating its theoretical and empirical aspects – and indeed our studies 

included significant work with computer-based simulations – we have demonstrated herein that 

the coordination of tacit (aggregate) and mathematical (elemental) views of probabilistic 

phenomena may play a major role in student learning of binomial distribution, even before any 

samples have been drawn.  
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Design 

That said, we are certainly not suggesting that intuitive views of the world suffice for 

mathematical literacy. On the contrary, we have grappled with the design problem of how to 

foster students’ mathematical learning, building on their intuitive views. Specifically, we 

demonstrated one way of potentially enabling learners to sustain their aggregate-event-based 

intuition even as they learn to appreciate the rationale and utility of elemental-event-based 

analysis.  

We found that students who make aggregate-event-based qualitative judgments of 

random generators’ outcome distributions can nevertheless adopt an elemental-event-based 

quantitative approach to mathematical models of these distributions. To do so, students need 

guidance in perceiving the sample space as enabling them to express their intuitive judgments. 

Then, and only in retrospect, the students may accept the combinatorial-analysis process as 

meaningful. 

Pedagogy 

Cognitive conflict need not entail a student abandoning intuitive knowledge in favor of 

mathematical knowledge. Rather, we have demonstrated a case of cognitive conflict between 

phenomenologically immediate and semiotically mediated ways of seeing problematized 

situations. Namely, students may have trouble accepting mathematical models, because these 

models parse the world in ways that conflict with their tacit parsing (see also Bamberger & 

diSessa 2003).  

Yet students may be guided to appropriate the mathematical model through a process we 

call a “semiotic leap” (Abrahamson 2009b). That is, the students recognize that the inscribed 

mathematical model, as a whole, captures aspects of their presymbolic image better than their 

naïve model does (cf. Sfard 2007). This semiotic leap triggers inquiry processes described by C. S. 

Peirce as “abductive.” 

We see this process of negotiating tacit and cultural constructions of “mathematical 

situations” as elaborating on Donald Schön’s thesis that learning is the process of synthesizing the 

intuitive and formal. In our case study, this synthesis was enabled as an assimilation of a 

situation’s mathematical parsing onto its intuitive parsing. This process is supported through 

careful design of mathematical objects that we call “bridging tools” – variants on classical 
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mathematical representations that invite perceptual judgments akin to those performed upon the 

source situation they model.  

Theory of Learning 

A consistent concern of this paper has been the relation between two theories of learning, 

constructivism and socioculturalism. At their extreme, pedagogical approaches inspired by each 

of these theories of learning bear very different implications for instructional design. Design-

based research studies, we have demonstrated, are pragmatic arenas for examining the prospects 

of reconciling theories of learning, because the caveat of creating coherent activities requires a 

coherent theory of learning. Inspired by principles of the constructivist perspective, we assumed 

that students’ assertions are subjectively meaningful, and we thus strove to reveal these meanings. 

Inspired by principles of the sociocultural perspective, we provided students with ready-made 

equipment and guided them into the associated practice of mathematical analysis.  

Our study reaffirmed the constructivist principle that students’ perceptual construction is 

contingent on their understanding. At the same time, we demonstrated the challenges students 

face in making sense of cultural tools. We found that teachers can play a vital role in helping 

students construct new mathematical ideas upon their existing knowledge, even if the existing and 

new notions appear conflicting. In particular, we now view teaching as the craft of helping 

students objectify inferences based on tacit knowledge in the form of new mathematical artifacts. 

In turn, we view educational designers’ charge as devising and researching effective semiotic 

artifacts affording this guided synthesis. 

Equipped with these new insights, we may dissolve apparent tension between 

constructivist and sociocultural theory – a theoretical dissolution that, in turn, may breed design 

solutions for guiding students’ safe passages along disciplinary trajectories from intuition to 

inscription. Thus, bridging tools may support the consilience of theoretical and empirical 

perspectives both in mathematical learning and in research onto this learning. 

Limitations and Future Work 

Whereas we have focused on a single case study here, our insights into this case built on 

a total of seventy-five interviews that used the same protocol as well as related research into other 

multiplicative constructs. However, our comments on instructional design are largely post facto, 
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because we are only beginning to understand our own craft of design (Abrahamson 2009a, 

Abrahamson & Wilensky 2007).  

A future challenge will be to engineer bridging tools that foster semiotic leaps toward 

targeted mathematical constructs, such that the viability of the emergent design framework can be 

held against a priori predictions. Furthermore, we are interested in the durability of students’ new 

insights as well as in the completion of their passages toward symbolical inscriptions. 

Specifically for the learning of probability, we wish to further explore whether and how 

our design enables students to understand cases of compound elemental events with p ≠ 0.5 

(Abrahamson 2009a) and how these activities may scale up to classroom group work.  

 

AUTHOR’S NOTE 
This paper builds on Abrahamson (2008), so this author wishes to re-convey his gratitude to the ICME 11 

TSG 13 reviewers and editors for their insightful comments that have advanced my thinking. For discussion of our 
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